scholarly journals Mitigation of Climate Change by Nitrogen Managements in Agriculture

2021 ◽  
Author(s):  
Kazuyuki Inubushi ◽  
Miwa Yashima

Soil is one of the important sources of nitrous oxide (N2O), which is generally producing through soil microbial processes, such as nitrification and denitrification. Agricultural soils receive chemical and organic fertilizers to maintain or increase crop yield and soil fertility, but several factors are influencing N2O emissions, such as types and conditions of soil and fertilizer, and rate, form, and timing of application. Mitigation of N2O is a challenging topic for future earth by using inhibitors, controlled-release fertilizers, and other amendments, but the cost and side effects should be considered for feasibility.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1936
Author(s):  
John Kormla Nyameasem ◽  
Enis Ben Halima ◽  
Carsten Stefan Malisch ◽  
Bahar S. Razavi ◽  
Friedhelm Taube ◽  
...  

Soil–plant interactions affecting nitrous oxide (N2O) are not well-understood, and experimental data are scarce. Therefore, a greenhouse experiment was conducted in a 3 × 3 full factorial design, comprising three mineral N fertilizer rates (0, 150 and 300 kg N ha−1) applied to monoculture swards and a binary mixture of Plantago lanceolata and Lolium perenne. The parameters measured included daily N2O emissions, aboveground (AG) and belowground biomass (BG), N and C yields, as well as leucine aminopeptidase (LAP) activity in the soil as an indicator for soil microbial activity. Nitrous oxide emission and LAP were measured using the static chamber method and fluorimetric microplate assays, respectively. Cumulative N2O emissions were about two times higher for P. lanceolata than L. perenne monoculture swards or the mixture (p < 0.05). The binary mixtures also showed the highest N use efficiency and LAP activity, which significantly (p < 0.05) correlated with the C concentration in the belowground biomass. Plantago lanceolata was generally ineffective at reducing N2O emissions, probably due to the young age of the swards. Among the biological factors, N2O emission was significantly associated with biomass productivity, belowground C yield, belowground N use efficiency and soil microbial activity. Thus, the results suggested belowground resource allocation dynamics as a possible means by which swards impacted N2O emission from the soils. However, a high N deposition might reduce the N2O mitigation potential of grasslands.



2011 ◽  
Vol 44 (6) ◽  
pp. 1207-1213 ◽  
Author(s):  
Hyun-Cheol Jeong ◽  
Gun-Yeob Kim ◽  
Deog-Bae Lee ◽  
Kyo-Moon Shim ◽  
Seul-Bi Lee ◽  
...  


2009 ◽  
Vol 6 (3) ◽  
pp. 5305-5337 ◽  
Author(s):  
M. Maljanen ◽  
P. Virkajärvi ◽  
J. Hytönen ◽  
M. Öquist ◽  
T. Sparrman ◽  
...  

Abstract. Agricultural soils are the most important sources for the greenhouse gas nitrous oxide (N2O), which is produced and emitted from soil also at low temperatures. The processes behind emissions at low temperatures are still poorly known. To simulate the effects of a reduction in snow depth on N2O emission in warming climate, snow pack was removed from three different agricultural soils (sand, mull, peat). Removal of snow lowered soil temperature and increased the extent and duration of soil frost which led to enhanced N2O emissions during freezing and thawing events in sand and mull soils. The cumulative emissions during the first year when snow was removed over the whole winter were 0.25, 0.66 and 3.0 g N2O-N m−2 yr−1 in control plots of sand, mull and peat soils, respectively. Without snow cover the respectively cumulative emissions were 0.37, 1.3 and 3.3 g N2O-N m−2 yr−1. Shorter snow manipulation during the second year did not increase the annual emissions. Only 20% of the N2O emission occurred during the growing season. Thus, highlighting the importance of the winter season for this exchange and that the year-round measurements of N2O emissions from boreal soils are integral for estimating their N2O source strength. N2O accumulated in the frozen soil during winter and the soil N2O concentration correlated with the depth of frost but not with the winter N2O emission rates per se. Also laboratory incubations of soil samples showed high production rates of N2O at temperatures below 0°C, especially in the sand and peat soils.



Author(s):  
Anna Jędrejek

The purpose of this study was to estimate nitrogen oxide emissions from soils used for agricultural purposes by voivodships. Compared N2O emissions were estimated according to the recommended IPCC (tier 1) method with simulated emissions using the DNDC (tier 3) model. Analyses were done for crop rotation (winter rape, winter wheat, winter wheat, winter triticale) in four cropping systems. Moreover, simulated N2O emissions from winter rape and winter triticale cultivation showed lower emissions and constituted 1475% and 13-76% of IPCC estimated emissions, respectively. The use of the model also enabled the determination of factors, which have an impact on nitrous oxide emissions and define its regional differentiation. The analysis showed that with increasing initial soil organic content, emissions of N2O rise and decrease with increasing precipitation or carbon sequestration. Considering the requirements for reduction GHG emissions, improving the methodology used in estimating nitrous oxide emissions is of significant practical value.



2020 ◽  
Vol 175 ◽  
pp. 09014
Author(s):  
Yulia Kolesnikova ◽  
Viktoriia Semal ◽  
Оlga Nesterova ◽  
Simona Castaldi ◽  
Mariya Bovsun ◽  
...  

The study investigates the effect of biochar on nitrous oxide emission in Endoargic Anthrosols in the southern territory of the Russian Far East. Biochar (bio-charcoal) was applied in the amounts of 1 kg/m2 and 3 kg/m2 in combination with organic and mineral fertilizers to drained and drain-free fields during the vegetation season, and the five-gas analyzer G2508 (Picarro) was used. Cumulative flows of N2O were estimated. The analysis revealed that biochar reduces the emissions and the cumulative flow of nitrous oxide. The higher the dose of biochar, the lower the emission and cumulative flows of nitrous oxide, regardless of a drainage system. Biochar (1 kg/m2) reduced the cumulative N2O flow from the soil by 52.2% throughout the experiment conducted, while a dose of 3 kg/m2 allowed for 97.8% reduction. The study found that organic and mineral fertilizers can be effectively used in combination with biochar, as N2O emission from the soil with mineral fertilizers is significantly higher than from the soil with organic fertilizers. Biochar (1 kg/m2) combined with organic fertilizers reduces N2O emission by 53.7%, while a dose of 3 kg/m2 can reduce emissions by 88.9%. Biochar (1 kg/m2) combined with mineral fertilizers reduced the flow of N2O by 17.5%, while a 3 kg/m2 dose of biochar used with mineral fertilizers reduced the emission by 85.3%.



2020 ◽  
pp. 341-349 ◽  
Author(s):  
María Eréndira Calleja-Cervantes ◽  
Ximena Huerfano ◽  
Iskander Barrena ◽  
José María Estavillo ◽  
Pedro M. Aparicio-Tejo ◽  
...  


2019 ◽  
Vol 56 (1) ◽  
pp. 39-51 ◽  
Author(s):  
Weishou Shen ◽  
Huaiwen Xue ◽  
Nan Gao ◽  
Yutaka Shiratori ◽  
Takehiro Kamiya ◽  
...  


2016 ◽  
Vol 98 (5-6) ◽  
pp. 551-560
Author(s):  
Feng Wang ◽  
Si Chen ◽  
Ke-qiang Zhang ◽  
Shi-zhou Shen ◽  
Xia Zhu-Barker


2008 ◽  
Vol 88 (5) ◽  
pp. 655-669 ◽  
Author(s):  
P. Rochette ◽  
D E Worth ◽  
E C Huffman ◽  
J A Brierley ◽  
B G McConkey ◽  
...  

International initiatives such as the United Nations Framework Convention on Climate Change and the Kyoto Protocol require that countries conduct national inventories of their greenhouse gas emissions. The primary objective of the present study was to apply a country-specific (Tier II) methodology at the regional (≈150 000 ha) scale to estimate direct N2O emissions from agricultural soils in Canada for the period 1990–2005. Other N2O sources such as manure management and indirect emissions were estimated using the Tier I Intergovernmental Panel on Climate Change (IPCC) methodology and were included to provide a complete assessment of agricultural N2O emissions. Total N2O emissions from agricultural sources averaged 58.1 Gg N2O-N yr-1 between 1990 and 2005 (from 48.9 in 1990 to 71.6 Gg N2O-N yr-1 in 2004). Of these mean emissions, 39.3 Gg N2O-N yr-1 or 68% were direct emissions from soils, 8.7 Gg N2O-N yr-1 or 15% were direct emissions from animal waste management systems and 10.1 Gg N2O-N yr-1 or 17% were from indirect emissions. Application of synthetic N fertilizers was the largest direct source of soil N2O with average emissions during the inventory period of 13.7 Gg N2O-N yr-1 or 35% of direct emissions. Crop residues (9.3 Gg N2O-N yr-1; 24%), grazing animals (6.8 Gg N2O-N yr-1; 17%) and manure applied to soils (4.1 Gg N2O-N yr-1; 10%) were the other major direct soil N2O sources. New non-IPCC N2O sources/offsets included in the Tier II methodology accounted for 10% of total direct soil emissions. Emissions occurring during summerfallow (2.2 Gg N2O-N yr-1; 6%), in lower portions of the landscape (2.2 Gg N2O-N yr-1; 6%), and following irrigation (0.7 Gg N2O-N yr-1; 2%) were partially offset by changes in tillage practices (-1.2 Gg N2O-N yr-1; -3%) and in coarse-textured soils (-0.2 Gg N2O-N yr-1; -1%). Differences in N2O estimates between Tier I and Tier II approaches mainly arise from the use of lower fertilizer-induced emission factors in the dry Prairie region and the addition of several new N2O sources/offsets in the Tier II methodology. Key words: Nitrous oxide, soils, greenhouse gases, inventory



Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 770
Author(s):  
Cong Wang ◽  
Barbara Amon ◽  
Karsten Schulz ◽  
Bano Mehdi

Nitrous oxide (N2O) is a long-lived greenhouse gas that contributes to global warming. Emissions of N2O mainly stem from agricultural soils. This review highlights the principal factors from peer-reviewed literature affecting N2O emissions from agricultural soils, by grouping the factors into three categories: environmental, management and measurement. Within these categories, each impact factor is explained in detail and its influence on N2O emissions from the soil is summarized. It is also shown how each impact factor influences other impact factors. Process-based simulation models used for estimating N2O emissions are reviewed regarding their ability to consider the impact factors in simulating N2O. The model strengths and weaknesses in simulating N2O emissions from managed soils are summarized. Finally, three selected process-based simulation models (Daily Century (DAYCENT), DeNitrification-DeComposition (DNDC), and Soil and Water Assessment Tool (SWAT)) are discussed that are widely used to simulate N2O emissions from cropping systems. Their ability to simulate N2O emissions is evaluated by describing the model components that are relevant to N2O processes and their representation in the model.



Sign in / Sign up

Export Citation Format

Share Document