Applying Technology

2019 ◽  
pp. 65-80
Author(s):  
Karl Raitz

The evolution from farmer-miller craft distilling to large-scale industrial distilling was abetted by inventions and innovations. Some inventions were directly applicable to the distilling process; others involved cognate areas such as steam-powered railroads and boats, farm equipment, glass bottle production, and improved grain varieties. The high-capacity column still went through several iterations in the 1820s, and in 1828 European inventor Aeneas Coffey patented an improved design. It underwent further improvements by American inventors. Other inventions beneficial to industrial distilling included grain elevators, slop dryers, hoists, and the barrel storage rack developed by Frederick Stitzel. Many inventions required changes in structures or transport and thereby modified the distilling landscape. For instance, the use of brick and iron in distillery buildings decreased the fire risk and permitted greater structure size and stability.

2020 ◽  
pp. 114-132
Author(s):  
Karl Raitz

The evolution from farmer-miller craft distilling to large-scale commercial industrial distilling was abetted by inventions and innovations that were related either directly or indirectly to the distilling process. Some inventions that were directly applicable to the distilling process included the high-capacity column still, developed through several iterations in the 1820s. In 1828 European inventor Aeneas Coffey patented an improved design, and it was later refined by American inventors. Other inventions beneficial to industrial distilling included grain elevators, slop dryers, hoists, and the barrel storage rack developed by Frederick Stitzel. Steam-powered railroads and boats, farm equipment, glass bottle production, and improved grain varieties also influenced distilling. Many inventions required changes in structures or transport and thereby modified the distilling landscape with new forms and placements.


2011 ◽  
Vol 11 (4) ◽  
pp. 481-489
Author(s):  
S. Krause ◽  
A. Obermayer

The public drinking water supply of southern Germany is characterized by a rather decentralized network. Due to the hydrogeological setting in these parts of Germany many of the small water works with an average capacity of 50 m3/h have to treat raw water extracted from karstic or cliffy aquifers. These raw waters tend to be contaminated with particles and pathogens acquired during snowmelt or after strong rainfalls. In the last decade ultrafiltration has become the technology of choice for the removal of the aforementioned contaminants. Flux decline caused by unanticipated membrane fouling is the main limitation for the application of ultrafiltration membranes. This paper describes how membrane fouling phenomena can be predicted by using a statistical approach based on data from large scale filtration systems in combination with field and lab experiments on raw water quality and membrane performance. The data defines water quality and respective fouling phenomena both in technical scale filtration plants and in lab experiments of eleven different raw waters. The method described here is more economically feasible for small water works when compared to typical pilot experiments that are used for high capacity water works.


Author(s):  
Christoph Schwörer ◽  
Erika Gobet ◽  
Jacqueline F. N. van Leeuwen ◽  
Sarah Bögli ◽  
Rachel Imboden ◽  
...  

AbstractObserving natural vegetation dynamics over the entire Holocene is difficult in Central Europe, due to pervasive and increasing human disturbance since the Neolithic. One strategy to minimize this limitation is to select a study site in an area that is marginal for agricultural activity. Here, we present a new sediment record from Lake Svityaz in northwestern Ukraine. We have reconstructed regional and local vegetation and fire dynamics since the Late Glacial using pollen, spores, macrofossils and charcoal. Boreal forest composed of Pinus sylvestris and Betula with continental Larix decidua and Pinus cembra established in the region around 13,450 cal bp, replacing an open, steppic landscape. The first temperate tree to expand was Ulmus at 11,800 cal bp, followed by Quercus, Fraxinus excelsior, Tilia and Corylus ca. 1,000 years later. Fire activity was highest during the Early Holocene, when summer solar insolation reached its maximum. Carpinus betulus and Fagus sylvatica established at ca. 6,000 cal bp, coinciding with the first indicators of agricultural activity in the region and a transient climatic shift to cooler and moister conditions. Human impact on the vegetation remained initially very low, only increasing during the Bronze Age, at ca. 3,400 cal bp. Large-scale forest openings and the establishment of the present-day cultural landscape occurred only during the past 500 years. The persistence of highly diverse mixed forest under absent or low anthropogenic disturbance until the Early Middle Ages corroborates the role of human impact in the impoverishment of temperate forests elsewhere in Central Europe. The preservation or reestablishment of such diverse forests may mitigate future climate change impacts, specifically by lowering fire risk under warmer and drier conditions.


RSC Advances ◽  
2019 ◽  
Vol 9 (60) ◽  
pp. 35045-35049
Author(s):  
Xu Chen ◽  
Jian Zhou ◽  
Jiarui Li ◽  
Haiyan Luo ◽  
Lin Mei ◽  
...  

High-performance lithium ion batteries are ideal energy storage devices for both grid-scale and large-scale applications.


Carbon ◽  
2013 ◽  
Vol 64 ◽  
pp. 158-169 ◽  
Author(s):  
Shuangqiang Chen ◽  
Peite Bao ◽  
Linda Xiao ◽  
Guoxiu Wang

2014 ◽  
Vol 2 (24) ◽  
pp. 9118-9125 ◽  
Author(s):  
Renzong Hu ◽  
Wei Sun ◽  
Yulong Chen ◽  
Meiqin Zeng ◽  
Min Zhu

Plasma-assisted milled Si/graphene nanocomposite anode delivers high capacity and good cycleability in half and full cells using a LiMn2O4 cathode.


2017 ◽  
Vol 2017 (2) ◽  
pp. 74-94 ◽  
Author(s):  
Aaron Johnson ◽  
Rob Jansen ◽  
Nicholas Hopper ◽  
Aaron Segal ◽  
Paul Syverson

Abstract We present PeerFlow, a system to securely load balance client traffic in Tor. Security in Tor requires that no adversary handle too much traffic. However, Tor relays are run by volunteers who cannot be trusted to report the relay bandwidths, which Tor clients use for load balancing. We show that existing methods to determine the bandwidths of Tor relays allow an adversary with little bandwidth to attack large amounts of client traffic. These methods include Tor’s current bandwidth-scanning system, TorFlow, and the peer-measurement system EigenSpeed. We present an improved design called PeerFlow that uses a peer-measurement process both to limit an adversary’s ability to increase his measured bandwidth and to improve accuracy. We show our system to be secure, fast, and efficient. We implement PeerFlow in Tor and demonstrate its speed and accuracy in large-scale network simulations.


Author(s):  
J R E Wright ◽  
G E Payne

The Mediterranean migrant crisis has resulted in the highest population displacement since the Second World War. In 2016 alone, over one million made the journey across the sea. Since 2013 over 15,000 have died as a result of this journey. Small vessels such as wooden fishing boats and RIBs are commonly used by smugglers as transport. These are often unseaworthy and filled with numbers of passengers far exceeding their intended capacity. When failure occurs, rescues are typically conducted by the nearest available vessel. These vessels are often ill-equipped for a large-scale Search and Rescue (SAR) operation making it highly dangerous for all involved.  The size and quantity of lifeboats available are often insufficient for the large numbers of people to be rescued; as a result, repeat journeys are required, making the rescue process slow, inefficient and hazardous. This paper outlines a novel solution to this problem. A concept design is presented for a rapidly expandable lifeboat capable of holding large numbers of passengers, whilst still fitting into the operational envelope of common davits. The unique inflatable design can be deployed quickly from a range of vessels and aeroplanes offering an immediate platform from which disembarkation onto a suitable vessel can be achieved. CONOPS are outlined along with the required capabilities of the design. Drop stitch technology is identified as a viable means of manufacturing the large inflatable platforms. Finally, the paper discusses an alternative solution, retrofitting existing enclosed lifeboats with the solution to offer a more cost-effective alternative.  


2021 ◽  
pp. 44-52
Author(s):  
V. F. Baranov

The article describes the largest operating processing plants for lowgrade copper sulphide ores of our time: 10 plants using the semi-autogenous grinding (SAG) technology and 10 plants using high-pressure grinding rolls (HPGR), with the output of 18 to 100 Mtpa. The unfavorable natural and economic factors are balanced by improved ore preparation and concentration technologies and high-capacity equipment units, combined with cost-saving layout solutions. The ore preparation sector is currently divided between the competing technologies of semi-autogenous grinding and HPGR. The article contains an overview of their advantages and disadvantages. The world’s largest monosection with the capacity of 55.5 Mtpa, that uses the SAG technology, is described. The role of the Drop Weght Test JKSimMet (A×b) parameter in the selection of the ore preparation method and the trend for using HPGR in the processing of strong ores are shown. Examples are provided for the consequences of an inadequate assessment of the feed strength in SAG-based plant designs. Examples of ore preparation process intensification through the use of HPGR in semi-autogenous grinding circuits are also given. The volume of impeller flotation cells installed has reached 600 m3. An overview of the two largest processing plants of our time with the output of 88 and 100 Mtpa of ore is presented. The innovative technical solutions of a newest low-capacity copper plant are highlighted. Based on the results of the overview, a future processing plant is predicted to use ∅12.8–13 m SAG mills, HPGRs with the roll diameter of 3 m, vertical VTM-7000 mills in ore grinding cycles, large fine screens, large-scale impeller flotation cells, and staged SFR and DFR flotation reactors.


2011 ◽  
Vol 368-373 ◽  
pp. 461-464
Author(s):  
Ren Le Ma ◽  
Ming Yi Zhang

With the rapid development of inland wind farm in China, the costal wind farm still has not got large-scale development as the result of the higher cost of fan foundation and the more difficulty of construction. The prefabricated prestressed cylinder foundation (PPC foundation), as a new type of wind turbine foundation designed for the soft soil region such as the inter-tidal coastal zone and inland wetlands, is introduced in this paper. The condition of lateral earth pressure distribution around the foundation which determines the flexural capacity of fan foundation in the soft soil is studied. Through theoretical analysis and mathematical derivation, the result shows that the lateral earth pressure around PPC foundation is changed with depth by 1.5th power curve which has good fitting to the finite element analysis result. The simplified and improved design process is applied into the practical engineering and the good economy of PPC foundation is proved.


Sign in / Sign up

Export Citation Format

Share Document