scholarly journals Evaluating the Frequency of Resistance to Pyrazinamide Among Drug-resistant Strains of Mycobacterium tuberculosis in Isfahan, Iran

2021 ◽  
Vol 16 (2) ◽  
Author(s):  
Bahram Nasr-Esfahani ◽  
Sharareh Moghim ◽  
Mahshid Salehi ◽  
Masoud Keikha

Background: Pyrazinamide is one of the most important first-line medications for the treatment of tuberculosis and an alternative intake for MDR-TB and XDR-TB patients. Objectives: The purpose of this study was to evaluate resistance to pyrazinamide in the isolates resistant to the Mycobacterium tuberculosis drug in patients in the city of Isfahan. Methods: In this study, the drug susceptibility test was performed with pyrazinamide using the proportion method and PZA assay on 47 isolates resistant to Mycobacterium tuberculosis. Then, the mutations of the pncA and rpsA genes of the isolates resistant to pyrazinamide were evaluated by the sequencing method. Results: According to the proportion method, 19 cases were resistant to pyrazinamide, 16 of which had mutations in their pncA and rpsA genes. Besides, five new mutations were recorded, and three isolates lacked mutations in the mentioned genes. Conclusions: Pyrazinamide resistance is high in MDR-TB and INH mono-resistant isolates. Therefore, evaluating the susceptibility to pyrazinamide in patients with MDR-TB before the initiation of treatment with pyrazinamide is considered essential.

2019 ◽  
Vol 57 (8) ◽  
Author(s):  
Kingsley King-Gee Tam ◽  
Kenneth Siu-Sing Leung ◽  
Gilman Kit-Hang Siu ◽  
Kwok-Chiu Chang ◽  
Samson Sai-Yin Wong ◽  
...  

ABSTRACT An in-house-developed pncA sequencing assay for analysis of pyrazinamide (PZA) resistance was evaluated using 162 archived Mycobacterium tuberculosis complex (MTBC) isolates with phenotypic PZA susceptibility profiles that were well defined by analysis of Bactec MGIT 960 PZA kit and PZase activity data. Preliminary results showed 100% concordance between pncA sequencing and phenotypic PZA drug susceptibility test (DST) results among archived isolates. Also, 637 respiratory specimens were prospectively collected, and 158 were reported as MTBC positive by the Abbott Realtime MTB assay (96.3% sensitivity [95% confidence interval {CI}: 92.2% to 98.7%]; 100% specificity [95% CI: 99.2% to 100.0%]). Genotypic and phenotypic PZA resistance profiles of these 158 MTBC-positive specimens were analyzed by pncA sequencing and Bactec MGIT 960 PZA kit, respectively. For analysis of PZA resistance, pncA sequencing detected pncA mutations in 5/5 (100%) phenotypic PZA-resistant respiratory specimens within 4 working days. No pncA mutations were detected among PZA-susceptible specimens. Combining archived isolates with prospective specimens, 27 were identified as phenotypic PZA resistant with pncA mutation. Among these 27 samples, 6/27 (22.2%) phenotypic PZA-resistant strains carried novel pncA mutations without rpsA and panD mutations. These included 5 with mutations (a deletion [Del] at 383T [Del383T], Del 380 to 390, insertion of A [A Ins] at position 127, A Ins at position 407, and G Ins at position 508) in pncA structural genes and 1 with a mutation (T-12C) at the pncA promoter region. All six of these strains had no or reduced PZase activities, indicating that the novel mutations might confer PZA resistance. Additionally, 25/27 phenotypic PZA-resistant strains were confirmed multidrug-resistant tuberculosis (MDR-TB) strains. As PZA is commonly used in MDR-TB treatment regimens, direct pncA sequencing will rapidly detect PZA resistance and facilitate judicious use of PZA in treating PZA-susceptible MDR-TB.


2013 ◽  
Vol 1 (1) ◽  
pp. 30-37 ◽  
Author(s):  
B Dahal ◽  
N Adhikari ◽  
Y Shah ◽  
RC Simkhada ◽  
B Maharjan ◽  
...  

Background and Objectives: Multidrug-resistant (MDR) Mycobacterium tuberculosis strains are serious threats to the control of tuberculosis and comprise an increasing public health problem. Rapid detection of such strains is quite critical in timely management of such issues. The study was performed with an objective to compare Genotype MTBDRplus reverse hybridization probe assay (Hain Lifescince, GmBH, Nehern, Germany) with culture based proportion method for rapidly identifying MDR-TB strains from suspected multi drug resistant cases, referred to GENETUP Kathmandu, Nepal. Methodology: A commercially available new Genotype MTBDRplus assay was evaluated for its ability to detect mutations in Mycobacterial isolates conferring resistance to rifampicin (RMP) and isoniazid (INH). A total of 64 MDR isolates (i.e., at least resistant to RMP and INH), 5 fully susceptible strains and 1 RMP sensitive strains by conventional proportion method were analyzed using Genotype MTBDRplus assay. MTBDRplus assay is designed to detect the mutations in the hot spot region of rpoB gene, katG and regulatory region of inhA gene. Results: The MTBDRplus assay detected 59 of 61 RMP resistant strains (96.72%) with mutations on 81-bp hot spot region of rpoB gene and 60 of 63 INH resistant strains (95.23%) with mutation in codon 315 katG and regulatory region of inhA. The sensitivity and specificity for the detection of RMP resistance were 96.72% and 100% respectively. While, value of the same two variables for INH resistance were 95.23% and 100%, respectively. Conclusions: The new Genotype MTBDRplus assay represents a rapid, reliable, upgraded tool with high sensitivity and specificity for the detection of INH and RMP resistance strains that can readily be included in a routine laboratory work for the early diagnosis and control of MDR-TB. DOI: http://dx.doi.org/10.3126/jmcjms.v1i1.7884 Janaki Medical College Journal of Medical Sciences (2013) Vol. 1 (1):30-37


2013 ◽  
Vol 19 (S4) ◽  
pp. 11-12
Author(s):  
C. Silva ◽  
E. Alverca ◽  
A.P. Alves de Matos ◽  
P.A. Carvalho ◽  
I. Portugal ◽  
...  

Tuberculosis (TB) is one of the major causes of mortality and morbidity worldwide accounting for 3.1 million deaths per year. This disease, caused by Mycobacterium tuberculosis (M. tuberculosis) made a deadly comeback, during the 1990’s, triggered mainly by the emergence of acquired immunodeficiency syndrome (AIDS). More recently, the emergence of multidrug resistant (MDR) and extensively drug resistant (XDR) M. tuberculosis strains, uncovered the most freighting face of this disease an incurable infection with the currently available therapeutic tools. Although Portugal is considered a medium incidence setting, annually are reported MDR and even XDR TB cases. The majority of these cases occur in the Lisbon area and the strains involved are genetically related being known as Lisboa family.In the present work a group of 283 M. tuberculosis isolates collected in a Lisbon hospital during a two years period (2008-2009) were studied. The morphology of colonies grown on Lowenstein-Jensen slants was studied by scanning electron microscopy (SEM) and transmission electron microscopy (TEM) using previously described procedures. The aim of the study was the establishment of a link between mycobacteria drug susceptibility and structure. In the first part of the study approximately 20 isolates, with different drug susceptibility profiles ranging from pan-susceptible to XDR, were grown on Lowenstein-Jensen slants and their morphology was compared. Although all mycobacteria originated rough colonies their size differ with the drug susceptibility profile. The pan-susceptible strains generated larger colonies than drug resistant strains as shown in figure 1.These colonies were then processed for SEM analysis. The results obtained show that mycobacteria surface are distinct in susceptible and drug resistant strains as shown in figure 2.A and B. While drug susceptible mycobacteria have a homogenous surface (Figure 1A), drug resistant bacteria present a heterogeneous surface (Figure 2B) with small protrusions (Fig. 2B inset). In order to evaluate the existence of differences in the ultrastructure of circulating M. tuberculosis strains the colonies were processed and analysed by TEM. For this approach were selected only two isolates: the pan-susceptible R188/09 and the XDR HPV108/09.The results obtained by the analysis of at least 300 bacteria present in non consecutive sections show that mycobacteria cell width (0 350 nm) is similar for both bacteria (Table 1). Nevertheless, their cell length and cell envelope width are significantly different. The XDR strain is shorter (p=0.009) and has a ticker cell envelope (p=0.004) than the pan-susceptible strain. These results are in agreement with those published in the literature.Altogether our data clearly shows the existence of a link between mycobacteria ultrastructure and drug susceptibility. In order to better evaluate these differences a larger number of isolates must be studied. The use of other electron microscopy techniques, such as CEMOVIS, will avoid the formation of undesirable artefacts (e.g. mesosome) produced by dehydration and room temperature sectioning allowing a better characterization of mycobacteria ultrastructure.The authors acknowledge the funding by Fundação para a Ciência e Tecnologia (SFRH/BD/73579/2010, C2008-C2008_P2 and PEst-OE/CTM-UI0084/2011 grants.)


2021 ◽  
Vol 11 ◽  
Author(s):  
Alina Minias ◽  
Lidia Żukowska ◽  
Ewelina Lechowicz ◽  
Filip Gąsior ◽  
Agnieszka Knast ◽  
...  

Tuberculosis (TB) is an infectious disease caused by the bacterium Mycobacterium tuberculosis. According to the WHO, the disease is one of the top 10 causes of death of people worldwide. Mycobacterium tuberculosis is an intracellular pathogen with an unusually thick, waxy cell wall and a complex life cycle. These factors, combined with M. tuberculosis ability to enter prolonged periods of latency, make the bacterium very difficult to eradicate. The standard treatment of TB requires 6–20months, depending on the drug susceptibility of the infecting strain. The need to take cocktails of antibiotics to treat tuberculosis effectively and the emergence of drug-resistant strains prompts the need to search for new antitubercular compounds. This review provides a perspective on how modern -omic technologies facilitate the drug discovery process for tuberculosis treatment. We discuss how methods of DNA and RNA sequencing, proteomics, and genetic manipulation of organisms increase our understanding of mechanisms of action of antibiotics and allow the evaluation of drugs. We explore the utility of mathematical modeling and modern computational analysis for the drug discovery process. Finally, we summarize how -omic technologies contribute to our understanding of the emergence of drug resistance.


2015 ◽  
Vol 36 ◽  
pp. 23-26 ◽  
Author(s):  
Jalil Kardan Yamchi ◽  
Mehri Haeili ◽  
Seifu Gizaw Feyisa ◽  
Hossein Kazemian ◽  
Abdolrazagh Hashemi Shahraki ◽  
...  

2017 ◽  
Vol 8 (1) ◽  
pp. 33-43 ◽  
Author(s):  
Aleksandr I. Ilin ◽  
Murat E. Kulmanov ◽  
Ilya S. Korotetskiy ◽  
Marina V. Lankina ◽  
Gulshara K. Akhmetova ◽  
...  

Emergence of multidrug resistant strains ofMycobacterium tuberculosis(MDR-TB) threatens humanity. This problem was complicated by the crisis in development of new anti-tuberculosis antibiotics. Induced reversion of drug resistance seems promising to overcome the problem. Successful clinical trial of a new anti-tuberculosis nanomolecular complex FS-1 has demonstrated prospectively of this approach in combating MDR-TB. Several clinical MDR-TB cultures were isolated from sputum samples prior and in the process of the clinical trial. Every isolate was tested for susceptibility to antibiotics and then they were sequenced for comparative genomics. It was found that the treatment with FS-1 caused an increase in the number of antibiotic susceptible strains among Mtb isolates that was associated with a general increase of genetic heterogeneity of the isolates. Observed impairing of phthiocerol dimycocerosate biosynthesis by disruptive mutations inppsACDsubunits indicated a possible virulence remission for the sake of persistence. It was hypothesized that the FS-1 treatment eradicated the most drug resistant Mtb variants from the population by aggravating the fitness cost of drug resistance mutations. Analysis of distribution of these mutations in the global Mtb population revealed that many of them were incompatible with each other and dependent on allelic states of many other polymorphic loci. The latter discovery may explain the negative correlation between the genetic heterogeneity of the population and the level of drug tolerance. To the best of our knowledge, this work was the first experimental confirmation of the drug induced antibiotic resistance reversion by the induced synergy mechanism that previously was predicted theoretically.


Elkawnie ◽  
2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Mashuri Masri ◽  
Cut Muthiadin ◽  
Masita Masita ◽  
Tri Cahyanto ◽  
Lianah Lianah ◽  
...  

Abstract: Tuberculosis (TB) is a contagious infectious disease caused by Mycobacterium tuberculosis. 10 million people suffer from TB Every year. Although TB is a preventable and treatable disease, 1.5 million people die every year due to TB. Alternative treatments continue to be pursued, and treatment with the latest TB drugs that are continuously being encouraged. Black cumin (Nigella sativa) seed contains essential oils with active compounds such as thymohydroquinone, Oleoresins, flavonoids, alkaloids, saponins, tannins, and terpenoids that act as antibacterial drugs. This study aims to determine the sensitivity of  N. sativa seed extract in inhibiting the growth of  M. tuberculosis strain H37RV and MDR-TB (Multidrug Resistance-TB). This research using Microscopic-Observation and Drug-Susceptibility Assay (MODS) method. Extraction of N. sativa was carried out by the maceration method using 70% methanol as a solvent. The results showed that the M. tuberculosis strain H37RV and MDR-TB were sensitive to N. sativa extract at concentrations of 5 and 10% but resistant to N. sativa extract at concentrations of 1 and 3%.Abstrak: Tuberkulosis (TB) adalah penyakit menular yang disebabkan oleh Bakteri Mycobacterium tuberculosis. Penyakit ini menimbulkan dampak kematian yang cukup mengkhawatirkan.  Penyakit tersebut dapat dicegah dan diobati. Salah satu sumber pengobatannya menggunakan biji jintan hitam (Nigella sativa) yang mengandung minyak atsiri dengan senyawa aktif seperti timohidrokuinon, oleoresin, flavonoid, alkaloid, saponin, tanin, dan terpenoid yang berfungsi sebagai obat antibakteri. Penelitian ini bertujuan untuk mengetahui sensitivitas ekstrak biji N. sativa dalam menghambat pertumbuhan M. tuberculosis strain H37RV and MDR-TB (Multidrug-Resistance-TB). Penelitian ini menggunakan metode Microscopic-Observation and Drug-Susceptibility Assay (MODS). Ekstraksi N. sativa dilakukan dengan metode maserasi menggunakan pelarut metanol 70%. Hasil yang diperoleh menunjukkan bahwa bakteri M. tuberculosis strain H37RV dan TB-MDR, kedua  strain tsb sensitif terhadap ekstrak N. sativa konsentrasi 5 dan 10%,  tetapi resisten terhadap  ekstrak N. sativa konsentrasi 1 dan 3%.


Sign in / Sign up

Export Citation Format

Share Document