scholarly journals Low Occurrence of Virulence Determinants in Vancomycin-Resistant Enterococcus from Clinical Samples in Southwest Nigeria

2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Folasade Muibat Adeyemi ◽  
Nana-Aishat Yusuf ◽  
Rashidat Ronke Adeboye ◽  
Omotayo Opemipo Oyedara

Background: The virulence factors of enterococci play a major role in the pathogenicity of enterococcal strains. Objectives: This study aimed to evaluate virulence factors and detect selected virulence and resistance genes in vancomycin-resistant Enterococcus (VRE) from clinical samples from southwest Nigeria. Methods: The VRE isolates (n = 85) recovered from clinical samples were characterized using conventional microbiology techniques, and molecular identification was made with ddlE primers. Phenotypic screening for five virulence determinants and detection of virulence and resistance genes using a polymerase chain reaction were carried out. Results: Phenotypic identification revealed 61 Enterococcus faecium and 24 Enterococcus faecalis. All the isolates hydrolyzed bile. Moreover, 88.2% of the isolates produced biofilm; however, 72.9% of the isolates produced gelatinase enzyme. Altogether, six isolates (7%) produced all five virulence factors. The least virulence factor expressed by the two species E. faecium and E. faecalis was DNase at 21.3% and 29.2% followed by cytolysin at 27.9% and 41.7%, respectively. Only 25 isolates (29.4%), including 23 E. faecium (37.7%) and only 2 (8.3%) E. faecalis isolates, revealed bands with molecular identification. Additionally, VRE isolates showed bands for asa1 (16%); only 1 (4%) isolate had the hyl gene and vanB gene, respectively. Conclusions: The absence of vanA and low detection of vanB resistance genes suggest the possible presence of other van types and emphasizes the need for further investigations on the incidence of other van genes using molecular screening methods in enterococci isolates in Nigeria for surveillance purposes. Moreover, the low occurrence of virulence genes implies that there might be other mediators of pathogenicity involved in Enterococcus virulence traits.

2019 ◽  
Author(s):  
Anna Weber ◽  
Friederike Maechler ◽  
Frank Schwab ◽  
Petra Gastmeier ◽  
Axel Kola

Abstract In addition to an overall rise in vancomycin-resistant Enterococcus faecium (VREfm), an increase in certain other strain types has been reported in Germany over the past few years. Outbreak analyses at Charité - Universitätsmedizin Berlin revealed the frequent occurrence of VREfm ST117 CT71 isolates in 2017 and 2018. To investigate whether ST117 CT71 have emerged in recent years or whether these strains have been circulating for a longer time, we retrospectively analyzed non-outbreak strains that occurred between 2008 and 2018 to identify frequent sequence types (STs) and cluster types (CTs). Methods In total, 120 VREfm isolates obtained from clinical and surveillance cultures from the years 2008, 2013, 2015, and 2018 were analyzed. Thirty isolates per year comprising the first 7 to 8 non-outbreak isolates of each quarter of the respective year were sequenced using whole genome sequencing. MLST and cgMLST were determined as well as resistance genes and virulence factors. Risk factors for VREfm ST117 were analyzed in a multivariable analysis with patient characteristics as possible confounders. Results The percentage of VREfm of type ST117 increased from 17% in 2008 to 57% in 2018 (p=0.012). In 2008, vanA genotype accounted for 80% of all ST117 isolates compared to 6% in 2018. VanB CT71 first appeared in 2018 and predominated over all other ST117 at 43% (p<0.0001). The set of resistance genes and virulence factors in CT71 (msrC, efmA, ermB, dfrG, and aac(6')-Ii) and virulence factors (acm, esp, hyl, ecbA and sgrA) was also found in other ST117 non-CT71 strains, mainly in CT36. The study population did not differ among the different calendar years analyzed in terms of age, gender, length of stay, or ward type (each p>0.2). Conclusion This study revealed an increase in ST117 strains from 2008 to 2018, accompanied by a shift toward CT71 strains with the vanB genotype in 2018. We did not detect resistance or virulence traits in CT71 that could confer survival advantage compared to other CTs among ST117 strains. To date, it is not clear why ST117 and in particular strain type ST117 CT71 predominates over other strains.


2021 ◽  
Vol 8 (2) ◽  
pp. 57-65
Author(s):  
Folasade Muibat Adeyemi ◽  
Nana-Aishat Yusuf ◽  
Rashidat Ronke Adeboye ◽  
Odunola Oluwaseun Oluwajide ◽  
Ajibade Kwashie Ako-Nai

Background: Of all enterococci species, the most renowned clinically as multidrug-resistant pathogens are Enterococcus faecium and Enterococcus faecalis. Vancomycin-resistant Enterococcus (VRE) species are the principal cause of opportunistic hospital-acquired infections, due to numerous resistance mechanisms. Methods: In this study, the prevalence and antibiotic resistance profiles of VRE according to clinical sources from three selected hospitals in Southwest-Nigeria were investigated. Altogether, 431 samples (urine, rectal, and wound swabs - caesarian section (CS), automobile accidents, and other skin lesions and abrasions) were collected from three selected hospitals in Osun State, Nigeria. Established techniques were employed for the recovery of enterococci and screening for VRE while antibiotic susceptibility tests were carried out by disc diffusion technique. Results: Altogether, 208 (48.3%) enterococci strains were recovered from which 85 (40.9%) were VRE. E. faecium predominated at 71.8% (61/85) and E. faecalis at 28.2% (24/85) as determined by phenotypic characterization. VRE isolates exhibited 100%, 97.6%, and 92.9% resistance to ampicillin, clindamycin, and quinupristin-dalfopristin (Q/D) respectively. The least resistance in-vitro was to tigecycline (27.1%). None of the antibiotics exhibited 100% activity against all the isolates. vanA resistant phenotype was prevalent at 65.9%. E. faecium from all study locations displayed higher levels of resistance than E. faecalis. Multiple antibiotic resistance (MAR) indices in all VRE isolates were ≥0.2, all being multidrug-resistant. Conclusions: The high prevalence rate along with the high level of multidrug resistance observed in the present study is worrisome and poses a continuous threat in the therapy of illnesses triggered by VRE as vancomycin was perceived as a drug of choice to curb enterococcal infections.


2020 ◽  
Author(s):  
Anna Weber ◽  
Friederike Maechler ◽  
Frank Schwab ◽  
Petra Gastmeier ◽  
Axel Kola

Abstract Background: In addition to an overall rise in vancomycin-resistant Enterococcus faecium (VREfm), an increase in certain strain types marked by sequence type (ST) and cluster type (CT) has been reported in Germany over the past few years. Outbreak analyses at Charité - Universitätsmedizin Berlin revealed the frequent occurrence of VREfm ST117 CT71 isolates in 2017 and 2018. To investigate whether ST117 CT71 have emerged in recent years or whether these strains have been circulating for a longer time, we retrospectively analyzed non-outbreak strains that occurred between 2008 and 2018 to identify frequent STs and CTs.Methods: In total, 120 VREfm isolates obtained from clinical and surveillance cultures from the years 2008, 2013, 2015, and 2018 were analyzed. Thirty isolates per year comprising the first 7 - 8 non-outbreak isolates of each quarter of the respective year were sequenced using whole genome sequencing. MLST and cgMLST were determined as well as resistance genes and virulence factors. Risk factors for VREfm ST117 were analyzed in a multivariable analysis with patient characteristics as possible confounders. Results: The percentage of VREfm of type ST117 increased from 17% in 2008 to 57% in 2018 (p=0.012). In 2008, vanA genotype accounted for 80% of all ST117 isolates compared to 6% in 2018. VanB CT71 first appeared in 2018 and predominated over all other ST117 at 43% (p<0.0001). The set of resistance genes (msrC, efmA, ermB, dfrG, aac(6')-Ii, gyrA, parC and pbp5) and virulence factors (acm, esp, hylEfm, ecbA and sgrA) in CT71 was also found in other ST117 non-CT71 strains, mainly in CT36. The study population did not differ among the different calendar years analyzed in terms of age, gender, length of stay, or ward type (each p>0.2).Conclusion: This study revealed an increase in ST117 strains from 2008 to 2018, accompanied by a shift toward CT71 strains with the vanB genotype in 2018. We did not detect resistance or virulence traits in CT71 that could confer survival advantage compared to other CTs among ST117 strains. To date, it is not clear why ST117 and in particular strain type ST117 CT71 predominates over other strains.


2020 ◽  
Author(s):  
Anna Weber ◽  
Friederike Maechler ◽  
Frank Schwab ◽  
Petra Gastmeier ◽  
Axel Kola

Abstract Background: In addition to an overall rise in vancomycin-resistant Enterococcus faecium (VREfm), an increase in certain strain types marked by sequence type (ST) and cluster type (CT) has been reported in Germany over the past few years. Outbreak analyses at Charité - Universitätsmedizin Berlin revealed the frequent occurrence of VREfm ST117 CT71 isolates in 2017 and 2018. To investigate whether ST117 CT71 have emerged in recent years or whether these strains have been circulating for a longer time, we retrospectively analyzed non-outbreak strains that occurred between 2008 and 2018 to identify frequent STs and CTs.Methods: In total, 120 VREfm isolates obtained from clinical and surveillance cultures from the years 2008, 2013, 2015, and 2018 were analyzed. Thirty isolates per year comprising the first 7 - 8 non-outbreak isolates of each quarter of the respective year were sequenced using whole genome sequencing. MLST and cgMLST were determined as well as resistance genes and virulence factors. Risk factors for VREfm ST117 were analyzed in a multivariable analysis with patient characteristics as possible confounders. Results: The percentage of VREfm of type ST117 increased from 17% in 2008 to 57% in 2018 (p=0.012). In 2008, vanA genotype accounted for 80% of all ST117 isolates compared to 6% in 2018. VanB CT71 first appeared in 2018 and predominated over all other ST117 at 43% (p<0.0001). The set of resistance genes (msrC, efmA, erm(B), dfrG, aac(6')-Ii, gyrA, parC and pbp5) and virulence factors (acm, esp, hylEfm, ecbA and sgrA) in CT71 was also found in other ST117 non-CT71 strains, mainly in CT36. The study population did not differ among the different calendar years analyzed in terms of age, gender, length of stay, or ward type (each p>0.2).Conclusion: This study revealed an increase in ST117 strains from 2008 to 2018, accompanied by a shift toward CT71 strains with the vanB genotype in 2018. We did not detect resistance or virulence traits in CT71 that could confer survival advantage compared to other CTs among ST117 strains. To date, it is not clear why ST117 and in particular strain type ST117 CT71 predominates over other strains.


2020 ◽  
Author(s):  
Raymond Mudzana ◽  
Rooyen T Mavenyengwa ◽  
Muchaneta Gudza-Mugabe

Abstract Background: Streptococcus agalacticae is one of the most important causative agents of serious infections among neonates. Group B Streptococcus (GBS) virulence factors are important in the development of vaccines, whilst antibiotic resistance genes are necessary in understanding the resistance mechanisms used by these pathogens. This study was carried out to identify the virulence genes and antibiotic resistance genes associated with GBS isolated from pregnant women.Methods: A total of 43 GBS isolates were obtained from vaginal samples that were collected from all HIV positive and HIV negative women who were 13-35 weeks pregnant attending Antenatal Care at both Chitungwiza and Harare Central Hospitals in Zimbabwe. Identification tests of GBS isolates was done using standard bacteriological methods including molecular tests. Antibiotic susceptibility testing using 3 antibiotics was done using the modified Kirby-Bauer method. The boiling method was used to extract DNA and Polymerase Chain Reaction (PCR) was used to screen for 13 genes in the isolates. Data was fed into SPSS 24.0 and the Spearman rank correlation test used to determine any correlation among genes.Results: Nine distinct virulence gene profiles were identified. The profiles hly-scpB-bca-rib 37.2% (16/43) and hly-scpB-bca 18.6% (8/43) were common among GBS isolates. The following virulence gene frequencies were obtained namely hly 97.8% (42/43), scpB 90.1% (39/43), bca 86.0% (37/43), rib 69.8% (30/43) and bac 11.6% (5/43). Antibiotic resistance genes showed high frequencies for tetM 97.6% (41/42) and low frequencies for ermB 34.5% (10/29), ermTR 10.3% (3/29), mefA 3.4% (1/29), tetO 2.4% (1/42) and linB 0% (0/35). The atr housekeeping gene amplification yielded 100% (43/43) positive results, whilst the mobile genetic element IS1548 yielded a low 9.3% (4/43).Conclusion: The study showed a high prevalence of multiple virulence genes hly, scpB, bca and rib in S. agalactiae strains isolated from pregnant women. Tetracycline resistance was found to be predominantly caused by the tetM gene, whilst macrolide resistance was predominantly due to the presence of erm methylase, with the ermB gene being more prevalent. It was also observed that in vitro phenotypic resistance is not always accurately predicted by resistance genotypes.


Sign in / Sign up

Export Citation Format

Share Document