scholarly journals Data Analysis for the Aero Derivative Engines Bleed System Failure Identification and Prediction

2021 ◽  
Vol 13 (6) ◽  
pp. 13-24
Author(s):  
Khalid Salmanov ◽  
◽  
Hadi Harb

Middle size gas/diesel aero-derivative power generation engines are widely used on various industrial plants in the oil and gas industry. Bleed of Valve (BOV) system failure is one of the failure mechanisms of these engines. The BOV is part of the critical anti-surge system and this kind of failure is almost impossible to identify while the engine is in operation. If the engine operates with BOV system impaired, this leads to the high maintenance cost during overhaul, increased emission rate, fuel consumption and loss in the efficiency. This paper proposes the use of readily available sensor data in a Supervisory Control and Data Acquisition (SCADA) system in combination with a machine learning algorithm for early identification of BOV system failure. Different machine learning algorithms and dimensionality reduction techniques are evaluated on real world engine data. The experimental results show that Bleed of Valve systems failures could be effectively predicted from readily available sensor data.

Author(s):  
E. B. Priyanka ◽  
S. Thangavel ◽  
D. Venkatesa Prabu

Big data and analytics may be new to some industries, but the oil and gas industry has long dealt with large quantities of data to make technical decisions. Oil producers can capture more detailed data in real-time at lower costs and from previously inaccessible areas, to improve oilfield and plant performance. Stream computing is a new way of analyzing high-frequency data for real-time complex-event-processing and scoring data against a physics-based or empirical model for predictive analytics, without having to store the data. Hadoop Map/Reduce and other NoSQL approaches are a new way of analyzing massive volumes of data used to support the reservoir, production, and facilities engineering. Hence, this chapter enumerates the routing organization of IoT with smart applications aggregating real-time oil pipeline sensor data as big data subjected to machine learning algorithms using the Hadoop platform.


2021 ◽  
Author(s):  
Edet Ita Okon ◽  
Dulu Appah

Abstract Application of artificial intelligence (AI) and machine learning (ML) is becoming a new addition to the traditional reservoir characterization, petrophysics and monitoring practice in oil and gas industry. Accurate reservoir characterization is the driver to optimize production performance throughout the life of a field. Developing physics-based data models are the key for applying ML techniques to solve complex reservoir problems. The main objective of this study is to apply machine learning techniques in reservoir Characterization. This was achieved via machine learning algorithm using permeability and porosity as the investigative variables. Permeability and porosity of a reservoir were predicted using machine learning technique with the aid of XLSTAT in Excel. The general performance and predictability of the technique as applied to permeability and porosity predictions were compared. From the results obtained, it was observed that the machine learning model used was able to predict about 98% of the permeability and 81% of the porosity. The results from Al and ML will reinforce reservoir engineers to carry out effective reservoir characterization with powerful algorithms based on machine learning techniques. Hence, it can therefore be inferred that machine learning approach has the ability to predict reservoir parameters.


2020 ◽  
Vol 12 (11) ◽  
pp. 4776 ◽  
Author(s):  
Pier Francesco Orrù ◽  
Andrea Zoccheddu ◽  
Lorenzo Sassu ◽  
Carmine Mattia ◽  
Riccardo Cozza ◽  
...  

The demand for cost-effective, reliable and safe machinery operation requires accurate fault detection and classification to achieve an efficient maintenance strategy and increase performance. Furthermore, in strategic sectors such as the oil and gas industry, fault prediction plays a key role to extend component lifetime and reduce unplanned equipment thus preventing costly breakdowns and plant shutdowns. This paper presents the preliminary development of a simple and easy to implement machine learning (ML) model for early fault prediction of a centrifugal pump in the oil and gas industry. The data analysis is based on real-life historical data from process and equipment sensors mounted on the selected machinery. The raw sensor data, mainly from temperature, pressure and vibrations probes, are denoised, pre-processed and successively coded to train the model. To validate the learning capabilities of the ML model, two different algorithms—the Support Vector Machine (SVM) and the Multilayer Perceptron (MLP)—are implemented in KNIME platform. Based on these algorithms, potential faults are successfully recognized and classified ensuring good prediction accuracy. Indeed, results from this preliminary work show that the model allows us to properly detect the trends of system deviations from normal operation behavior and generate fault prediction alerts as a maintenance decision support system for operatives, aiming at avoiding possible incoming failures.


2021 ◽  
Author(s):  
Afungchwi Ronald Ngwashi ◽  
David O. Ogbe ◽  
Dickson O. Udebhulu

Abstract Data analytics has only recently picked the interest of the oil and gas industry as it has made data visualization much simpler, faster, and cost-effective. This is driven by the promising innovative techniques in developing artificial intelligence and machine-learning tools to provide sustainable solutions to ever-increasing problems of the petroleum industry activities. Sand production is one of these real issues faced by the oil and gas industry. Understanding whether a well will produce sand or not is the foundation of every completion job in sandstone formations. The Niger Delta Province is a region characterized by friable and unconsolidated sandstones, therefore it's more prone to sanding. It is economically unattractive in this region to design sand equipment for a well that will not produce sand. This paper is aimed at developing a fast and more accurate machine-learning algorithm to predict sanding in sandstone formations. A two-layered Artificial Neural Network (ANN) with back-propagation algorithm was developed using PYTHON programming language. The algorithm uses 11 geological and reservoir parameters that are associated with the onset of sanding. These parameters include depth, overburden, pore pressure, maximum and minimum horizontal stresses, well azimuth, well inclination, Poisson's ratio, Young's Modulus, friction angle, and shale content. Data typical of the Niger Delta were collected to validate the algorithm. The data was further split into a training set (70%) and a test set (30%). Statistical analyses of the data yielded correlations between the parameters and were plotted for better visualization. The accuracy of the ANN algorithm is found to depend on the number of parameters, number of epochs, and the size of the data set. For a completion engineer, the answer to the question of whether or not a well will require sand production control is binary-either a well will produce sand or it does not. Support vector machines (SVM) are known to be better suited as the machine-learning tools for binary identification. This study also presents a comparative analysis between ANN and SVM models as tools for predicting sand production. Analysis of the Niger Delta data set indicated that SVM outperformed ANN model even when the training data set is sparse. Using the 30% test set, ANN gives an accuracy, precision, recall, and F1 - Score of about 80% while the SVM performance was 100% for the four metrics. It is then concluded that machine learning tools such as ANN with back-propagation and SVM are simple, accurate, and easy-to-use tools for effectively predicting sand production.


Author(s):  
Abraham García-Aliaga ◽  
Moisés Marquina ◽  
Javier Coterón ◽  
Asier Rodríguez-González ◽  
Sergio Luengo-Sánchez

The purpose of this research was to determine the on-field playing positions of a group of football players based on their technical-tactical behaviour using machine learning algorithms. Each player was characterized according to a set of 52 non-spatiotemporal descriptors including offensive, defensive and build-up variables that were computed from OPTA’s on-ball event records of the matches for 18 national leagues between the 2012 and 2019 seasons. To test whether positions could be identified from the statistical performance of the players, the dimensionality reduction techniques were used. To better understand the differences between the player positions, the most discriminatory variables for each group were obtained as a set of rules discovered by RIPPER, a machine learning algorithm. From the combination of both techniques, we obtained useful conclusions to enhance the performance of players and to identify positions on the field. The study demonstrates the suitability and potential of artificial intelligence to characterize players' positions according to their technical-tactical behaviour, providing valuable information to the professionals of this sport.


2021 ◽  
Author(s):  
Rajeev Ranjan Sinha ◽  
Supriya Gupta ◽  
Praprut Songchitruksa ◽  
Saniya Karnik ◽  
Amey Ambade

Abstract Electrical Submersible Pump (ESP) systems efficiently pump high volumes of production fluids from the wellbore to the surface. They are extensively used in the oil and gas industry due to their adaptability, low maintenance, safety and relatively low environmental impact. They require specific operating conditions with respect to the power, fluid level and fluid content. Oilfield operation workflows often require extensive surveillance and monitoring by subject-matter experts (SMEs). Detecting issues like formation of unwanted gas and emulsions in ESPs requires constant analysis of downhole data by SMEs. The lack of adequate and accurate monitoring of the downhole pumps can lead to low efficiency, high lifting costs, and frequent repair and replacements. There are 3 workflows described in the paper which demonstrate that the maintenance costs of the ESPs can be significantly reduced, and production optimized with the augmentation of machine learning approaches typically unused in ESP surveillance and failure analysis.


2021 ◽  
Author(s):  
Ahmad Naufal Naufal ◽  
Samy Abdelhamid Samy ◽  
Nenisurya Hashim Nenisurya ◽  
Zaharuddin Muhammad Zaharuddin ◽  
Eddy Damsuri Eddy ◽  
...  

Abstract Equipment failure, unplanned downtime operation, and environmental damage cost represent critical challenges in overall oil and gas business from well reservoir identification and drilling strategy to production and processing. Identifying and managing the risks around assets that could fail and cause redundant and expensive downtime are the core of plant reliability in oil and gas industry. In the current digital era; there is an essential need of innovative data-driven solutions to address these challenges, especially, monitoring and diagnosis of plant equipment operations, recognize equipment failure; avoid unplanned downtime; repair costs and potential environmental damage; maintaining reliable production, and identifying equipment failures. Machine learning-artificial intelligence application is being studied to develop predictive maintenance (PdM) models as innovative analytics solution based on real-data streaming to get to an elevated level of situational intelligence to guide actions and provide early warnings of impending asset failure that previously remained undetected. This paper proposes novel machine learning predictive models based on extreme learning/support vector machines (ELM-SVM) to predict the time to failure (TTF) and when a plant equipment(s) will fail; so maintenance can be planned well ahead of time to minimize disruption. Proper visualization with deep-insights (training and validation) processes of the available mountains of historian and real-time data are carried out. Comparative studies of ELM-SVM techniques versus the most common physical-statistical regression techniques using available rotating equipment-compressors and time-failure mode data. Results are presented and it is promising to show that the new machine learning (ELM-SVM) techniques outperforms physical-statistics techniques with reliable and high accurate predictions; which have a high impact on the future ROI of oil and gas industry.


2020 ◽  
Author(s):  
D. Bannikov ◽  
D. Pantsurkin ◽  
I. Velikanov ◽  
K. Lyapuunov ◽  
S. Parkhonyk

Sign in / Sign up

Export Citation Format

Share Document