Study on dispersal traits of dimorphic fruits of Fraxinus velutina

2018 ◽  
Vol 38 (4) ◽  
Author(s):  
田旭平 TIAN Xuping ◽  
韩有志 HAN Youzhi
2015 ◽  
Vol 43 (2) ◽  
pp. 256-267 ◽  
Author(s):  
Libby Liggins ◽  
Eric A. Treml ◽  
Hugh P. Possingham ◽  
Cynthia Riginos

2020 ◽  
Author(s):  
Efrat Dener ◽  
Hagai Shemesh ◽  
Itamar Giladi

Abstract Aims The evolution and expression of dispersal-related traits are intertwined with those of other life-history functions and are manifested within various physiological constraints. Such a relationship is predicted between inbreeding levels and dispersability, which may be anatomically and ontogenetically linked so that the selection pressures on one may affect the other. While both the effect of inbreeding on reproductive success and on dispersal strategies received much attention, only a few studies considered both simultaneously. Furthermore, such studies often rely on two dichotomic representations of breeding and dispersal: using selfing vs. outcrossing as a representation of breeding level, and dispersal ratio as the sole representation of dispersal strategy. Methods Here we used pollination experiments in the heterocarpic Crepis sancta (Asteraceae) to expand in two different manners on the common practice of using dichotomic representations of breeding and dispersal. First, we used pollination treatments that represent a continuum from selfing through pollination by kin to pollination by a distant neighbor. Second, we measured a whole set of continuous morphological and dispersal-related traits, in addition to measurements of reproductive success and dispersal ratio. Important findings The proportion of developed capitula and the number of both dispersed and non-dispersed achenes were significantly lower in the self-pollination treatment in comparison to the out-crossed treatments. The effect of pollen sources on dispersal ratio was not statistically significant, though self-pollinated plants rarely produced non-dispersing seeds. Achene’s biomass increased with distance between parent plants, but pappus width did not, leading to a nonsignificant effect of pollination on falling velocity. Overall, pollen source affected mainly traits that were associated with reproductive output, but it had no clear effect on predominately dispersal-related traits. Such differences in the response of reproduction and dispersal traits to variation in pollen source suggest that dispersal-related selection is probably weak and/or masked by other forces.


Author(s):  
Andrew V. Gougherty

In the northern hemisphere, many species have been reported to have greater genetic diversity in southern populations than northern populations - ostensibly due to migration northward following the last glacial maximum (LGM). The generality of this pattern, while well-established for some taxa, remains unclear for North American trees. To address this issue, I collected published population genetics data for 73 North American tree species, and tested whether genetic diversity was associated with latitude or longitude and whether geographic trends were associated with dispersal traits, range or study characteristics. I found there were no general geographic patterns in genetic diversity, and the strength of the geographic gradients were not associated with any species or study characteristics. Species in the northern and western regions of North America tended to have more species with genetic diversity that declined with latitude, but most species had no significant trend. This work shows that North American trees have complex, individualistic, patterns of genetic diversity that may negate explanation by any particular dispersal trait or range characteristic.


2018 ◽  
Author(s):  
Michelle F. DiLeo ◽  
Arild Husby ◽  
Marjo Saastamoinen

AbstractThere is now clear evidence that species across a broad range of taxa harbour extensive heritable variation in dispersal. While studies suggest that this variation can facilitate demographic outcomes such as range expansion and invasions, few have considered the consequences of intraspecific variation in dispersal for the maintenance and distribution of genetic variation across fragmented landscapes. Here we examine how landscape characteristics and individual variation in dispersal combine to predict genetic structure using genomic and spatial data from the Glanville fritillary butterfly. We used linear and latent factor mixed models to identify the landscape features that best predict spatial sorting of alleles in the dispersal-related gene phosphoglucose isomerase (Pgi). We next used structural equation modeling to test if variation in Pgi mediated gene flow as measured by Fst at putatively neutral loci. In a year when the population was expanding following a large decline, individuals with a genotype associated with greater dispersal ability were found at significantly higher frequencies in populations isolated by water and forest, and these populations showed lower levels of genetic differentiation at neutral loci. These relationships disappeared in the next year when metapopulation density was high, suggesting that the effects of individual variation are context dependent. Together our results highlight that 1) more complex aspects of landscape structure beyond just the configuration of habitat can be important for maintaining spatial variation in dispersal traits, and 2) that individual variation in dispersal plays a key role in maintaining genetic variation across fragmented landscapes.Impact summaryUnderstanding how fragmentation affects dispersal and gene flow across human-modified landscapes has long been a goal in evolutionary biology. It is typically assumed that individuals of the same species respond to the landscape in the same way, however growing evidence suggests that individuals can vary considerably in their dispersal traits. While the effects of this individual dispersal variation on range expansions and invasions have been well-characterized, knowledge of how it might mediate genetic responses to landscape fragmentation are almost entirely lacking. Here we demonstrate that individual variation in dispersal is key to the maintenance of genetic variation during a population expansion following a large decline in a butterfly metapopulation. We further show that spatial variation in dispersal is not maintained by the configuration of habitat patches alone, but by a more complex genotype-environment interaction involving the landscape matrix (i.e. landscape features found between habitat patches). This challenges the simplified landscape representations typically used in studies of dispersal evolution that ignore heterogeneity in the landscape matrix. More broadly, our results highlight the interplay of adaptive and neutral processes across fragmented landscapes, suggesting that an understanding of species vulnerability to landscape fragmentation requires consideration of both.


2017 ◽  
Vol 372 (1712) ◽  
pp. 20160038 ◽  
Author(s):  
Jonathan Dubois ◽  
Pierre-Olivier Cheptou

Urban ecosystems are relatively recent and heavily human-altered terrestrial ecosystems with a surprisingly high diversity of animals, plants and other organisms. Urban habitats are also strongly fragmented and subject to higher temperatures, providing a compelling model for studying adaptation to global change. Crepis sancta (Asteraceae), an annual Mediterranean wasteland weed, occupies fragmented urban environments as well as certain unfragmented landscapes in southern France. We tested for shifts in dispersal, reproductive traits and size across a rural–urban gradient to learn whether and how selection may be driving changes in life history in urban and fragmented habitats. We specifically compared the structure of quantitative genetic variation and of neutral markers (microsatellites) between urban and rural and between fragmented and unfragmented habitats. We showed that fragmentation provides a better descriptor of trait variation than urbanization per se for dispersal traits. Fragmentation also affected reproductive traits and plant size though one rural population did conform to this scheme. Our study shows the role of fragmentation for dispersal traits shift in urban environments and a more complex pattern for other traits. We discuss the role of pollinator scarcity and an inhospitable matrix as drivers of adaptation. This article is part of the themed issue ‘Human influences on evolution, and the ecological and societal consequences’.


2019 ◽  
Vol 67 (4) ◽  
pp. 358 ◽  
Author(s):  
Bruno Dematteis ◽  
María S. Ferrucci ◽  
Juan P. Coulleri

Plant invasion success is influenced by several driving factors such as the dispersal, environmental conditions and the species characteristics. In wind dispersed plants, the dispersal traits and the altitude are key for predicting dispersal ability. In this work, we estimated this feature in Senecio madagascariensis invasive populations from Argentina and Brazil using diaspore traits to understand its dynamics. Our results show that dispersal is strongly affected by the geographic conditions. We observed that in Argentinian populations growing at higher altitudes, selection favours larger seeds, which might favour seedling establishment over of longer dispersal distance. Conversely, populations grouped in lower altitudes show higher dispersal ability, probably due to the adaptation to environment and assortment of the better dispersal genotypes. In contrast, the Brazilian populations display rapid dispersal ability due to recent colonisation and multiple introductions. The variability in the gene pool could facilitate the occurrence of genotypes with greater dispersal, which could explain why these populations display greater dispersal ability than the Argentine ones. In conclusion, the phenotypic response to geographic conditions and the population density play an important role in the dispersion strategies in S. madagascariensis.


2018 ◽  
Vol 12 (1) ◽  
pp. 111-127 ◽  
Author(s):  
Ridouan Bani ◽  
Marie-Josée Fortin ◽  
Rémi M. Daigle ◽  
Frédéric Guichard

2020 ◽  
Vol 193 (3) ◽  
pp. 275-283
Author(s):  
Miguel Saigo ◽  
Mercedes Marchese ◽  
Luciana Montalto

Metacommunity theory is a mechanistic framework that explains the interdependence of local factors and regional processes as community drivers. Recent evidence suggests that dispersal mode is a key trait that potentially affects metacommunity dynamics. We analyzed the distribution patterns of benthic macroinvertebrates with different dispersal modes in the Middle Paraná, a neotropical large river. We assessed the relative importance of local environmental conditions and regional spatial structure as assemblage drivers. Aquatic and aerial dispersers presented Clementsian and Gleasonian structures, respectively. For both groups, local environmental conditions influenced community assembly, and spatial structure (overland distances) also affected the distribution of aerial dispersers. Our study highlights that the role of spatial structure as a driver of benthic metacommunities depends on species' dispersal modes. Aerial dispersers responded to regional spatial variables and it is likely that these organisms are also influenced by mass effects. Our results are consistent with current ideas of metacommunity dynamics in large rivers, where dispersal is not considered to limit the distribution of benthic organisms.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Samik Bhattacharya ◽  
Katja Sperber ◽  
Barış Özüdoğru ◽  
Gerhard Leubner-Metzger ◽  
Klaus Mummenhoff

Abstract Plasticity in plant dispersal traits can maximise the ability of a plant species to survive in stressful environments during colonization. Aethionema arabicum (Brassicaceae) is a dimorphic annual species that is hypothesized to survive stressful conditions during colonization due to adaptive plasticity in life-phase (vegetative vs sexual) and fruit morph (dehiscent [DEH] vs indehiscent fruits [IND]). We tested for adaptive plasticity in life-phase and fruit morphs along laboratory environmental stress gradients found in the natural habitats of Ae. arabicum. We considered optimal environmental conditions (750–2000 m above sea level) to be those that resulted in the following fitness parameters: higher biomass and a higher total number of fruits compared to stressful habitats. We found evidence of plasticity in life-phase and fruit-morph along a stressful environmental gradient. High hydrothermal stress proportionally increased the number of dehiscent morphs and non-dormant seeds germinating in autumn. This offsets natural phenology towards dry and cold winter (less hydrothermal stress), yielding fewer fruits that dehisce in the next generation. We conclude that the plastic responses of Ae. arabicum to natural stress gradients constitute a strategy of long-term adaptive benefits and favouring potential pathways of colonisation of the optimal habitat.


Sign in / Sign up

Export Citation Format

Share Document