scholarly journals Effect of long-term N fertilization on ca saturation and soil quality in a calcareous soil in a semiarid to sub-humid region

2014 ◽  
Vol 9 (1) ◽  
pp. 80-93
Author(s):  
Hai, XU, ◽  
Yi-quan WANG, ◽  
Xiao-yun LI, ◽  
Hao WANG, ◽  
Yong-jian WANG, ◽  
...  
Agronomy ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 300 ◽  
Author(s):  
Pradeep Wagle ◽  
Prasanna Gowda

Adoption of better management practices is crucial to lessen the impact of anthropogenic disturbances on tallgrass prairie systems that contribute heavily for livestock production in several states of the United States. This article reviews the impacts of different common management practices and disturbances (e.g., fertilization, grazing, burning) and tallgrass prairie restoration on plant growth and development, plant species composition, water and nutrient cycles, and microbial activities in tallgrass prairie. Although nitrogen (N) fertilization increases aboveground productivity of prairie systems, several factors greatly influence the range of stimulation across sites. For example, response to N fertilization was more evident on frequently or annually burnt sites (N limiting) than infrequently burnt and unburnt sites (light limiting). Frequent burning increased density of C4 grasses and decreased plant species richness and diversity, while plant diversity was maximized under infrequent burning and grazing. Grazing increased diversity and richness of native plant species by reducing aboveground biomass of dominant grasses and increasing light availability for other species. Restored prairies showed lower levels of species richness and soil quality compared to native remnants. Infrequent burning, regular grazing, and additional inputs can promote species richness and soil quality in restored prairies. However, this literature review indicated that all prairie systems might not show similar responses to treatments as the response might be influenced by another treatment, timing of treatments, and duration of treatments (i.e., short-term vs. long-term). Thus, it is necessary to examine the long-term responses of tallgrass prairie systems to main and interacting effects of combination of management practices under diverse plant community and climatic conditions for a holistic assessment.


Land ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 727
Author(s):  
Ana Simoes-Mota ◽  
Rosa Maria Poch ◽  
Alberto Enrique ◽  
Luis Orcaray ◽  
Iñigo Virto

The aim of this work was to identify the most sensitive soil quality indicators and assess soil quality after long-term application of sewage sludge (SS) and conventional mineral fertilization for rainfed cereal production in a sub-humid Mediterranean calcareous soil. The treatments included six combinations of SS at different doses (40 t ha−1 and 80 ha−1) and frequencies (every 1, 2 and 4 years), plus a control with mineral fertilization, and a baseline control without fertilization. Twenty-five years after the onset of the experiment, 37 pre-selected physical, chemical and biological soil parameters were measured, and a minimum data set was determined. Among these indicators, those significantly affected by treatment and depth were selected as sensitive. A principal component analysis (PCA) was then performed for each studied depth. At 0–15 cm, PCA identified three factors (F1, F2 and F3), and at 15–30 cm, two factors (F4 and F5) that explained 71.5% and 67.4% of the variation, respectively, in the soil parameters. The most sensitive indicators (those with the highest correlation within each factor) were related to nutrients (P and N), organic matter, and trace metals (F1 and F4), microporosity (F2), earthworm activity (F3), and exchangeable cations (F5). Only F3 correlated significantly (and negatively) with yield. From these results, we concluded that soil quality can be affected in opposite directions by SS application, and that a holistic approach is needed to better assess soil functioning under SS fertilization in this type of agrosystem.


2018 ◽  
Vol 69 (10) ◽  
pp. 2608-1612 ◽  
Author(s):  
Alina Dora Samuel ◽  
Simona Bungau ◽  
Delia Mirela Tit ◽  
Carmen Elena Melinte (Frunzulica) ◽  
Lavinia Purza ◽  
...  

Long term productivity and conservation of soils is critical for sustaining agricultural ecosystems. The specific objective of the work reported was to determine the effects of long term application of organic and mineral fertilizers on soil enzyme activity as an index of soil biology and biochemistry. Three key soil enzymes involved in intracellular metabolism of microorganisms and two soil enzymes involved in phosphorus metabolism were selected. Actual and potential dehydrogenase, catalase, acid and alkaline phosphatase activities were determined in the 0-20 cm layer of an eroded soil submitted to a complex fertilization experiment. Results showed that addition of mineral fertilizers to organic (green manure and farmyard manure) fertilizers led to a significant increase in each activity because of increased plant biomass production which upon incorporation stimulates soil biological activity. The enzymatic indicators of soil quality calculated from the values of enzymatic activities depending on the kind of fertilizers showed that by the determination of enzymatic activities valuable information can be obtained regarding fertility status of soils. A weak positive correlation between enzymatic indicators of soil quality and maize yield was established. The yield data demonstrate the superiority of farmyard manure which provided greater stability in crop production. Substantial improvement in soil biological activity due to application of organic fertilizers with mineral fertilizers contribute in maintaining the productivity and soil health.


Author(s):  
Sushanta Saha ◽  
Bholanath Saha ◽  
Samanyita Mohanty ◽  
Manabendra Ray ◽  
Gora Chand Hazra ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 650
Author(s):  
Jesús Aguilera-Huertas ◽  
Beatriz Lozano-García ◽  
Manuel González-Rosado ◽  
Luis Parras-Alcántara

The short- and medium—long-term effects of management and hillside position on soil organic carbon (SOC) changes were studied in a centenary Mediterranean rainfed olive grove. One way to measure these changes is to analyze the soil quality, as it assesses soil degradation degree and attempts to identify management practices for sustainable soil use. In this context, the SOC stratification index (SR-COS) is one of the best indicators of soil quality to assess the degradation degree from SOC content without analyzing other soil properties. The SR-SOC was calculated in soil profiles (horizon-by-horizon) to identify the best soil management practices for sustainable use. The following time periods and soil management combinations were tested: (i) in the medium‒long-term (17 years) from conventional tillage (CT) to no-tillage (NT), (ii) in the short-term (2 years) from CT to no-tillage with cover crops (NT-CC), and (iii) the effect in the short-term (from CT to NT-CC) of different topographic positions along a hillside. The results indicate that the SR-SOC increased with depth for all management practices. The SR-SOC ranged from 1.21 to 1.73 in CT0, from 1.48 to 3.01 in CT1, from 1.15 to 2.48 in CT2, from 1.22 to 2.39 in NT-CC and from 0.98 to 4.16 in NT; therefore, the soil quality from the SR-SOC index was not directly linked to the increase or loss of SOC along the soil profile. This demonstrates the time-variability of SR-SOC and that NT improves soil quality in the long-term.


2015 ◽  
Vol 78 (11) ◽  
pp. 2070-2080 ◽  
Author(s):  
MICHELLE L. KAISER ◽  
MICHELE L. WILLIAMS ◽  
NICHOLAS BASTA ◽  
MICHELLE HAND ◽  
SARAH HUBER

This study was intended to characterize the perceived risks of urban agriculture by residents of four low-income neighborhoods in which the potential exists for further urban agriculture development and to provide data to support whether any chemical hazards and foodborne pathogens as potential food safety hazards were present. Sixty-seven residents participated in focus groups related to environmental health, food security, and urban gardening. In addition, soils from six locations were tested. Residents expressed interest in the development of urban gardens to improve access to healthy, fresh produce, but they had concerns about soil quality. Soils were contaminated with lead (Pb), zinc, cadmium (Cd), and copper, but not arsenic or chromium. Results from our study suggest paint was the main source of soil contamination. Detectable polyaromatic hydrocarbon (PAH) levels in urban soils were well below levels of concern. These urban soils will require further management to reduce Pb and possibly Cd bioavailability to decrease the potential for uptake into food crops. Although the number of locations in this study is limited, results suggest lower levels of soil contaminants at well-established gardens. Soil tillage associated with long-term gardening could have diluted the soil metal contaminants by mixing the contaminants with clean soil. Also, lower PAH levels in long-term gardening could be due to enhanced microbial activity and PAH degradation, dilution, or both due to mixing, similar to metals. No foodborne pathogen targets were detected by PCR from any of the soils. Residents expressed the need for clearness regarding soil quality and gardening practices in their neighborhoods to consume food grown in these urban areas. Results from this study suggest long-term gardening has the potential to reduce soil contaminants and their potential threat to food quality and human health and to improve access to fresh produce in low-income urban communities.


Sign in / Sign up

Export Citation Format

Share Document