scholarly journals Water footprint as a sustainable water use indicator in spring area of pantanal biome, Brazil

2020 ◽  
Vol 42 ◽  
pp. e67
Author(s):  
Eliane Aparecida Antunes Fagundes ◽  
José Dantas Neto ◽  
Vicente Paulo Rodrigues Silva ◽  
Domingos Sávio Barbosa ◽  
Vera Lúcia Antunes Lima

Water footprint (WF) is an indicator of fresh water consumption that considers in its calculation the used water volume during the production process. The research objective was to evaluatecotton, corn and soybean crops WF at the São Lourenço-MT sub-basin area. The water consumption was quantified in Green Water Footprint (WFGreen) and Gray Water Footprint (WFGray). The WFGreen of each crop was calculated by the evapotranspiration value throughout the crop growing period. The WFGray was counted separately for a group of nine agrochemicals. In the current scenario there is sustainability in the sub-basin of the São Lourenço river, but with the agricultural current area expansion rate, in 2025 there will be no such sustainability.

2018 ◽  
Vol 7 (4.35) ◽  
pp. 244
Author(s):  
Nurul Azmah Safie ◽  
M.A. Malek ◽  
Z. Z. Noor

Change in climate, increasing world population and industrialization have placed considerable stress on water availability at certain places. Water Footprint accounting is a reliable technique that can be used for a better water management. This study focuses on establishing a doable methodology on water footprint accounting and assessment for direct water consumption from domestic and institutional sectors located in an urbanized environment such as Klang Valley, Kuala Lumpur. It includes investigation of Water Footprint at domestic household, schools, colleges, terminals and offices in Klang Valley. The value of water consumption, water production and water pollution will be determined using Hoekstra’s approach for green water, blue water and grey water. In addition, findings from this study will be linked to two other elements namely energy and food. This link is named as Water-Energy-Food Nexus. This study will establish the quantity and criteria of Water-Energy-Food Nexus specifically tailored to domestic and institutional sectors in Klang Valley.


Water ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 1145 ◽  
Author(s):  
Pei Zhang ◽  
Xiaoya Deng ◽  
Aihua Long ◽  
Yang Hai ◽  
Yang Li ◽  
...  

Irrigation plays an important role in China’s agricultural production, and a reasonable assessment of water resources consumption in agricultural production will contribute to improved agricultural water management practices. The objectives of this study were to analyze variations in the magnitude of the crop water footprint (CWF) in Xinjiang and determine the major factors that influence variation in order to provide proposals for water resources management. The CWF of Xinjiang from 1988 to 2015 was calculated, and the impacts of crop-planting structures, agricultural inputs, and water conservancy projects on agricultural water use were analyzed to evaluate the suitable amount of agricultural water utilization and area of farmland in Xinjiang. Results show that the magnitude of the CWF in Xinjiang significantly increased during the study period. Construction of water conservancy projects greatly facilitated water diversion and had the closest relationship with the growth of CWF. The appropriate water volume and planting area for agriculture in Xinjiang is calculated to be 39.4 billion m3 and 4.3 million ha, respectively, which are 73% and 65% of the current water consumption and cultivated area, respectively. These results can be used as a reference for reducing agricultural water consumption and the farmland area in Xinjiang.


Author(s):  
Truong Thanh Canh ◽  
Thuy-Trang Thi Nguyen ◽  
Anh Hoang Le

The research conducted a survey of the water consumption in Ho Chi Minh City through the consumption of products from agriculture, industry and domestic. The research identified green water, blue water and grey water footprints in consuming products. Then personal water footprints were calculated and evaluated. The results showed that the average personal water footprint in district 3 was 1556 m3/year (77.15% for agriculture, 15.59% for industry and 7.26% for domestic), district 10 was 1587 m3/year (77.58% for agriculture, 15.17% for industry and 7.25% domestic), Nha Be district is 1681 m3/year (80.48% for agriculture, 12.97% for industry and 6.55% for domestic) and Binh Chanh district was 1744 m3/year (81.57% for agriculture, 11.88% for industry and 6.55% for domestic). In the individual components of the water footprint, water footprints in consuming agricultural products accounted for the major percentage and determined the personal water footprint. The results showed that the individual water footprints in countryside areas were higher than those in urban areas. Depending on the amount and forms of each individual's consumption, their eating habit and daily activities, and the sexes, the personal water footprints were different. The perception and behavior of individuals' water consumption also significantly influenced the overall personal water footprints.


Author(s):  
Cheerawit Rattanapan ◽  
◽  
Weerawat Ounsaneha

The aim of this research was to assess the water footprint level of Thai banana production. Firstly, the water consumption inventory of banana production was developed. The water consumptions in the banana farms and a case study of banana industry were collected based on the inventory. The results showed that the water consumption of banana plantation was 842.02 m3 including 443.50 m3 of green water, 398.52 m3 of blue water and not found grey water. Moreover, 1638.59 m3/rai was found in the one rai of banana plantation consisted of 863.06 m3/rai of green water and 775.53 m3/rai of blue water. From the finding of this study, the reduction approach of water footprint for banana production should be the reduction of watering the plant in the process of banana growing.


Author(s):  
Maite M. Aldaya ◽  
M. Ramón Llamas ◽  
Arjen Y. Hoekstra

This is an advance summary of a forthcoming article in the Oxford Research Encyclopedia of Environmental Science. Please check back later for the full article. The water footprint concept broadens the scope of traditional national and corporate water accounting as it has been previously known. It highlights the ways in which water consuming and polluting activities relate to the structure of the global economy, opening a window of opportunity to increase transparency and improve water management along whole-production and supply chains. This concept adds a new dimension to integrated water resources management in a globalized world. The water footprint is a relatively recent indicator. Created in 2002, it aims to quantify the effect of consumption and trade on the use of water resources. Specifically, the water footprint is an indicator of freshwater use that considers both direct and indirect water use of a consumer or producer. For instance, the water footprint of a product refers to the volume of freshwater used to produce the product, tracing the origin of raw material and ingredients along their respective supply chains. This novel indirect component of water use in supply chains is, in many cases, the greatest share of water use, for example, in the food and beverage sector and the apparel industry. Water footprint assessment shows the full water balance, with water consumption and pollution components specified geographically and temporally and with water consumption specified by type of source (e.g., rainwater, groundwater, or surface water). It introduces three components: 1. The blue water footprint refers to the consumption of blue water resources (i.e., surface and groundwater including natural freshwater lakes, manmade reservoirs, rivers, and aquifers) along the supply chain of a product, versus the traditional and restricted water withdrawal measure. 2. The green water footprint refers to consumption through transpiration or evaporation of green water resources (i.e., soilwater originating from rainwater). Green water maintains natural vegetation (e.g., forests, meadows, scrubland, tundra) and rain-fed agriculture, yet plays an important role in most irrigated agriculture as well. Importantly, this kind of water is not quantified in most traditional agricultural water use analyses. 3. The grey water footprint refers to pollution and is defined as the volume of freshwater that is required to assimilate the load of pollutants given natural concentrations for naturally occurring substances and existing ambient water-quality standards. The water footprint concept has been incorporated into public policies and international standards. In 2011, the Water Footprint Network adopted the Water Footprint Assessment Manual, which provides a standardized method and guidelines. In 2014, the International Organization for Standardization adopted a life cycle-based ISO 14046 standard for the water footprint; it offers guidelines to integrate water footprint analysis in life-cycle assessment for products. In practice, water footprint assessment generally results in increased awareness of critical elements in a supply chain, such as hotspots that deserve most attention, and what can be done to improve water management in those hotspots. Water footprint assessment, including the estimation of virtual water trade, applied in different countries and contexts, is producing new data and bringing larger perspectives that, in many cases, lead to a better understanding of the drivers behind water scarcity.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1249
Author(s):  
Tariq Khan ◽  
Hamideh Nouri ◽  
Martijn J. Booij ◽  
Arjen Y. Hoekstra ◽  
Hizbullah Khan ◽  
...  

Pakistan possesses the fourth largest irrigation network in the world, serving 20.2 million hectares of cultivated land. With an increasing irrigated area, Pakistan is short of freshwater resources and faces severe water scarcity and food security challenges. This is the first comprehensive study on the water footprint (WF) of crop production in Peshawar Basin. WF is defined as the volume of freshwater required to produce goods and services. In this study, we assessed the blue and green water footprints (WFs) and annual blue and green water consumption of major crops (maize, rice, tobacco, wheat, barley, sugarcane, and sugar beet) in Peshawar Basin, Pakistan. The Global Water Footprint Assessment Standard (GWFAS) and AquaCrop model were used to model the daily WF of each crop from 1986 to 2015. In addition, the blue water scarcity, in the context of available surface water, and economic water productivity (EWP) of these crops were assessed. The 30 year average blue and green WFs of major crops revealed that maize had the highest blue and green WFs (7077 and 2744 m3/ton, respectively) and sugarcane had the lowest blue and green WFs (174 and 45 m3/ton, respectively). The average annual consumption of blue water by major crops in the basin was 1.9 billion m3, where 67% was used for sugarcane and maize, covering 48% of the cropland. The average annual consumption of green water was 1.0 billion m3, where 68% was used for wheat and sugarcane, covering 67% of the cropland. The WFs of all crops exceeded the global average. The results showed that annually the basin is supplied with 30 billion m3 of freshwater. Annually, 3 billion m3 of freshwater leaves the basin unutilized. The average annual blue water consumption by major crops is 31% of the total available surface water (6 billion m3) in the basin. Tobacco and sugar beet had the highest blue and green EWP while wheat and maize had the lowest. The findings of this study can help the water management authorities in formulating a comprehensive policy for efficient utilization of available water resources in Peshawar Basin.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 803
Author(s):  
Winnie Gerbens-Leenes ◽  
Markus Berger ◽  
John Anthony Allan

Considering that 4 billion people are living in water-stressed regions and that global water consumption is predicted to increase continuously [...]


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Karandish ◽  
Hamideh Nouri ◽  
Marcela Brugnach

AbstractEnding hunger and ensuring food security are among targets of 2030’s SDGs. While food trade and the embedded (virtual) water (VW) may improve food availability and accessibility for more people all year round, the sustainability and efficiency of food and VW trade needs to be revisited. In this research, we assess the sustainability and efficiency of food and VW trades under two food security scenarios for Iran, a country suffering from an escalating water crisis. These scenarios are (1) Individual Crop Food Security (ICFS), which restricts calorie fulfillment from individual crops and (2) Crop Category Food Security (CCFS), which promotes “eating local” by suggesting food substitution within the crop category. To this end, we simulate the water footprint and VW trades of 27 major crops, within 8 crop categories, in 30 provinces of Iran (2005–2015). We investigate the impacts of these two scenarios on (a) provincial food security (FSp) and exports; (b) sustainable and efficient blue water consumption, and (c) blue VW export. We then test the correlation between agro-economic and socio-environmental indicators and provincial food security. Our results show that most provinces were threatened by unsustainable and inefficient blue water consumption for crop production, particularly in the summertime. This water mismanagement results in 14.41 and 8.45 billion m3 y−1 unsustainable and inefficient blue VW exports under ICFS. “Eating local” improves the FSp value by up to 210% which lessens the unsustainable and inefficient blue VW export from hotspots. As illustrated in the graphical abstract, the FSp value strongly correlates with different agro-economic and socio-environmental indicators, but in different ways. Our findings promote “eating local” besides improving agro-economic and socio-environmental conditions to take transformative steps toward eradicating food insecurity not only in Iran but also in other countries facing water limitations.


2015 ◽  
Vol 671 ◽  
pp. 412-418
Author(s):  
Lu Lu Xu ◽  
Li Zhu Chen ◽  
Hugh Gong ◽  
Xue Mei Ding

Water footprint is a volumetric indicator of freshwater appropriation. The grey water footprint (GWF) provides a tool to assess the water volume needed to assimilate a pollutant. However, evaluating the impact on water environment cannot rely solely on volumetric consumption of freshwater. It demands accurate assessment criteria to reflect its environmental and ecological effects on ambient water resource. In this paper, a new assessment method is proposed: the effluent toxicity and the Potential Eco-toxic Effects Probe (PEEP) index of aquatic environment are taken into consideration. This method provides a comprehensive indicator for evaluating water footprint, specified in effluents’ ecological impact on ambient water sources.


Sign in / Sign up

Export Citation Format

Share Document