scholarly journals Estimating Soil Water Susceptibility to Salinization in the Mekong River Delta Using a Modified DRASTIC Model

Water ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1636
Author(s):  
Thanh N. Le ◽  
Duy X. Tran ◽  
Thuong V. Tran ◽  
Sangay Gyeltshen ◽  
Tan V. Lam ◽  
...  

Saltwater intrusion risk assessment is a foundational step for preventing and controlling salinization in coastal regions. The Vietnamese Mekong Delta (VMD) is highly affected by drought and salinization threats, especially severe under the impacts of global climate change and the rapid development of an upstream hydropower dam system. This study aimed to apply a modified DRASTIC model, which combines the generic DRASTIC model with hydrological and anthropogenic factors (i.e., river catchment and land use), to examine seawater intrusion vulnerability in the soil-water-bearing layer in the Ben Tre province, located in the VMD. One hundred and fifty hand-auger samples for total dissolved solids (TDS) measurements, one of the reflected salinity parameters, were used to validate the results obtained with both the DRASTIC and modified DRASTIC models. The spatial analysis tools in the ArcGIS software (i.e., Kriging and data classification tools) were used to interpolate, classify, and map the input factors and salinization susceptibility in the study area. The results show that the vulnerability index values obtained from the DRASTIC and modified DRASTIC models were 36–128 and 55–163, respectively. The vulnerable indices increased from inland districts to coastal areas. The Ba Tri and Binh Dai districts were recorded as having very high vulnerability to salinization, while the Chau Thanh and Cho Lach districts were at a low vulnerability level. From the comparative analysis of the two models, it is obvious that the modified DRASTIC model with the inclusion of a river or canal network and agricultural practices factors enables better performance than the generic DRASTIC model. This enhancement is explained by the significant impact of anthropogenic activities on the salinization of soil water content. This study’s results can be used as scientific implications for planners and decision-makers in river catchment and land-use management practices.

Author(s):  
Shamal S. Kumar ◽  
Ananta G. Mahale ◽  
Ashutosh C. Patil

It is projected that by 2030, the global population will rise to 8.5 billion influencing various changes to the whole globe. Since 1750, the level of carbon dioxide (CO2) has increased sharply and exceeds more than 31 percent as a result of land use change and intense farming activities that require unique and modern actions to manage its climate - related risks. The earth is getting warmer day by day due to land use transition, intensive agriculture; global carbon (C) emissions have drastically increases after industrial revolution. Soil C depletion is enhanced by soil mismanagement, soil degradation and aggravated by land exploitation. Sources of emissions from various anthropogenic activities; land use change, burning of natural biomass, natural conversion to agricultural habitats, and soil cultivation. The soil as a dynamic natural entity has the potential of storing most of the C from atmosphere that will cause substantial decrease in CO2 content that is enhancing global climate change. Through agriculture, soils can reduce CO2 emissions in the atmosphere and store C while having good effect on food security, water quality and climate prior to the introduction of best management and restorative land-use practices. Most of the reduced C in soil carbon (SC) pools can be recovered by embracing conservation tillage (no-till, reduced tillage) with cover cropping and incorporating crop residues as mulch, nutrient management through integrated nutrient management practices, manure and organic amendments, biochar and using other productive soil management strategies. These management systems lead to preservation of lands that are being or have been depleted, increase carbon production, enhance soil health and decrease the amount of atmospheric CO2 leading to climate change mitigation.


2014 ◽  
Vol 49 (4) ◽  
pp. 372-385
Author(s):  
Shawn Burdett ◽  
Michael Hulley ◽  
Andy Smith

A hydrologic and water quality model is sought to establish an approach to land management decisions for a Canadian Army training base. Training areas are subjected to high levels of persistent activity creating unique land cover and land-use disturbances. Deforestation, complex road networks, off-road manoeuvres, and vehicle stream crossings are among major anthropogenic activities observed to affect these landscapes. Expanding, preserving and improving the quality of these areas to host training activities for future generations is critical to maintain operational effectiveness. Inclusive to this objective is minimizing resultant environmental degradation, principally in the form of hydrologic fluctuations, excess erosion, and sedimentation of aquatic environments. Application of the Soil Water Assessment Tool (SWAT) was assessed for its ability to simulate hydrologic and water quality conditions observed in military landscapes at 5th Canadian Division Support Base (5 CDSB) Gagetown, New Brunswick. Despite some limitations, this model adequately simulated three partial years of daily watershed outflow (NSE = 0.47–0.79, R2 = 0.50–0.88) and adequately predicted suspended sediment yields during the observation periods (%d = 6–47%) for one highly disturbed sub-watershed in Gagetown. Further development of this model may help guide decisions to develop or decommission training areas, guide land management practices and prioritize select landscape mitigation efforts.


2018 ◽  
Vol 24 (3) ◽  
pp. 293-304 ◽  
Author(s):  
Ismail Chenini ◽  
Adel Zghibi ◽  
Mohamed Haythem Msaddek ◽  
Mahmoud Dlala

Abstract The groundwater vulnerability assessment is normally applied to rural watersheds. However, urbanization modifies the hydrogeological processes. A modified DRASTIC model was adopted to establish a groundwater vulnerability map in an urbanized watershed. The modified DRASTIC model incorporated a land-use map, and net recharge was calculated taking into account the specificity of the urban hydrogeological system. The application of the proposed approach to the Mannouba watershed demonstrates that the groundwater vulnerability indexes range from 80 to 165. The study's results shows that 30 percent of the Mannouba watershed area has a high vulnerability index, 45 percent of the area has a medium index, and 25 percent of the study area has a low vulnerability index. To specify the effect of each DRASTIC factor on the calculated vulnerability index, sensitivity analyses were performed. Land use, topography, and soil media have an important theoretical weight greater than the effective weight. The impact of the vadose zone factor has the most important effective weight and affects the vulnerability index. The sensitivity assessment explored the variation in vulnerability after thematic layer removal. In this analysis, the removal of hydraulic conductivity and impact of vadose zone modified the vulnerability index. Groundwater vulnerability assessment in urbanized watersheds is difficult and has to consider the impact of urbanization in the hydrogeological parameters.


2021 ◽  
Author(s):  
Nde Samuel Che ◽  
Sammy Bett ◽  
Enyioma Chimaijem Okpara ◽  
Peter Oluwadamilare Olagbaju ◽  
Omolola Esther Fayemi ◽  
...  

The degradation of surface water by anthropogenic activities is a global phenomenon. Surface water in the upper Crocodile River has been deteriorating over the past few decades by increased anthropogenic land use and land cover changes as areas of non-point sources of contamination. This study aimed to assess the spatial variation of physicochemical parameters and potentially toxic elements (PTEs) contamination in the Crocodile River influenced by land use and land cover change. 12 surface water samplings were collected every quarter from April 2017 to July 2018 and were analyzed by inductive coupled plasma spectrometry-mass spectrometry (ICP-MS). Landsat and Spot images for the period of 1999–2009 - 2018 were used for land use and land cover change detection for the upper Crocodile River catchment. Supervised approach with maximum likelihood classifier was used for the classification and generation of LULC maps for the selected periods. The results of the surface water concentrations of PTEs in the river are presented in order of abundance from Mn in October 2017 (0.34 mg/L), followed by Cu in July 2017 (0,21 mg/L), Fe in April 2017 (0,07 mg/L), Al in July 2017 (0.07 mg/L), while Zn in April 2017, October 2017 and April 2018 (0.05 mg/L). The concentrations of PTEs from water analysis reveal that Al, (0.04 mg/L), Mn (0.19 mg/L) and Fe (0.14 mg/L) exceeded the stipulated permissible threshold limit of DWAF (< 0.005 mg/L, 0.18 mg/L and 0.1 mg/L) respectively for aquatic environments. The values for Mn (0.19 mg/L) exceeded the permissible threshold limit of the US-EPA of 0.05 compromising the water quality trait expected to be good. Seasonal analysis of the PTEs concentrations in the river was significant (p > 0.05) between the wet season and the dry season. The spatial distribution of physicochemical parameters and PTEs were strongly correlated (p > 0.05) being influenced by different land use type along the river. Analysis of change detection suggests that; grassland, cropland and water bodies exhibited an increase of 26 612, 17 578 and 1 411 ha respectively, with land cover change of 23.42%, 15.05% and 1.18% respectively spanning from 1999 to 2018. Bare land and built-up declined from 1999 to 2018, with a net change of - 42 938 and − 2 663 ha respectively witnessing a land cover change of −36.81% and − 2.29% respectively from 1999 to 2018. In terms of the area under each land use and land cover change category observed within the chosen period, most significant annual change was observed in cropland (2.2%) between 1999 to 2009. Water bodies also increased by 0.1% between 1999 to 2009 and 2009 to 2018 respectively. Built-up and grassland witness an annual change rate in land use and land cover change category only between 2009 to 2018 of 0.1% and 2.7% respectively. This underscores a massive transformation driven by anthropogenic activities given rise to environmental issues in the Crocodile River catchment.


2019 ◽  
Vol 11 (2) ◽  
pp. 35
Author(s):  
Peter Nkashi AGAN

Land use is the utilization and reordering of land cover for human comfort. This process disrupts the pristine state of the environment reducing the quality of environmental receptors like water, air, vegetation etc. Air pollution is introduced into the environment as a result of anthropogenic activities from commercial, industrial and residential areas. These activities are burning of fossil fuels for power generation, transport of goods and services, valorization of raw materials into finished products, bush burning, use of gas cookers, generators and electric stove etc. The introduction of pollutants into the planetary layer of the atmosphere has impacted negatively on the quality of the environment posing threat to humans and the survival of the ecosystem. In Lagos metropolis, commercial activities and high population densities have caused elevated levels of pollution in the city. This study aimed to investigate the spatial distribution of pollutant in Lagos metropolis with a view to revealing the marked spatial/temporal difference in pollutants levels over residential, commercial and industrial land uses. Commercial and industrial land uses revealed higher levels of pollutants than the residential areas. Pearson product moment correlation coefficients revealed strong positive relationship between land use and air quality in the city.


2020 ◽  
Vol 61 (4) ◽  
pp. 313-327
Author(s):  
Akıner Ernur

The Büyük Melen river in the Melen Basin meets Istanbul's drinking water needs. Protecting the basin against nutrient pollution is vital in this regard as well. This study focuses on the best possible management practice (BMPs) in the Melen Basin to reduce the export of nutrients from the agricultural areas. A region comprising industrial, farming, and residential zones is the Melen basin. There is a forecast of global climate change in Turkey, and scientists and also governors must know which areas are no longer farming zones and which will be more appropriate for agriculture. Turkey's territory is a high-risk desertification area. In Melen Basin, the soil type and land use properties have been determined and mapped using GIS and Soil and Water Assessment Tool (SWAT). Buffer BMP filter strips can be used effectively for nutrient protection that can be carried from residential areas and motorways by runoff. The region in the basin is steep, and its clay and sandy soil structures are ideal for parallel terraces, grade stabilization, strip, and contour cultivation. Unless the ground can not retain or store water, the soil can undergo sudden floods, causing an erosion of the soil's productive surface layer. When we protect the land, this condition is reduced. The land type and land use mapping should be drawn up as soon as possible for the remaining Turkish basins by scientific methods. This research is intended to be an illustration for researches on other agricultural basins in Turkey and the world for this reason.


Land ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 130
Author(s):  
Thanh Thi Nguyen ◽  
Melvin Lippe ◽  
Carsten Marohn ◽  
Tran Duc Vien ◽  
Georg Cadisch

The present study revealed how local socioecological knowledge elucidated during participatory rural appraisals and historical remote sensing data can be combined for analyzing land use change patterns from 1954 to 2007 in northwestern Vietnam. The developed approach integrated farmer decision rules on cropping preferences and location, visual and supervised classification methods, and qualitative information obtained during various forms of participatory appraisals. The integration of historical remote sensing data (aerial photo, Landsat, LISS III) with farmer decision rules showed the feasibility of the proposed method to explain crop distribution patterns for the assessment period of 53 years. Our approach is beneficial for data-limited environments, which is a prevalent situation for many developing regions. The derived land use and crop type dataset was used for understanding how anthropogenic activities altered the study area of the Chieng Khoi commune during the assessment period of five decades, and what potential impact this can have on the natural resource base. The newly developed approach offers a methodological pathway that can be easily transferred to local government authorities for a better understanding of cropping transitions and agricultural expansion trends in data-limited rural landscapes. The detected land use change patterns and upland cropping expansion of more than two hundred percent in 53 years not only revealed the consequences of the interactions and feedback between farmers and their land, but further highlighted the urgent need for implementing sustainable land management practices in the case study watershed of the Chieng Khoi commune and northwestern Vietnam in general.


<em>Abstract</em>.—Paddlefish <em>Polyodon spathula </em>are large, riverine fishes that occupy extensive home ranges and often migrate long distances in spring to spawn. As a result of these life history characteristics, paddlefish require many habitats to sustain their population over time. Largely as a result of anthropogenic activities, many of the habitats historically used by paddlefish have been altered or destroyed and remaining paddlefish habitats are being threatened by dam construction, channelization and dredging, and altered land use within watersheds. Understanding how habitat alteration may affect paddlefish populations, and identifying threats to current paddlefish habitat, is needed for the management of this species. We review the threats to paddlefish habitats and assess how anthropogenic habitat alterations, such as changes to natural hydrology through the construction of dams and channelization of large rivers or altered land-use patterns leading to increased sedimentation, have affected paddlefish populations. Recent river restoration and conservation measures that help protect and restore paddlefish habitats include fish passage structures and controlled water releases from dams to simulate a more natural hydrograph. New threats such as global climate change may alter paddlefish habitats in the future. Continued efforts to minimize the impact of anthropogenic changes to paddlefish habitats, and measures to restore natural riverine conditions, may help conserve vital habitats for paddlefish populations.


2018 ◽  
Vol 7 (3.14) ◽  
pp. 55
Author(s):  
Mohd Khairul Amri Kamarudin ◽  
Noorjima Abd. Wahab ◽  
Ahmad Fadhli Mamat ◽  
Hafizan Juahir ◽  
Mohd Ekhwan Toriman ◽  
...  

Kenyir Lake’s natural environment experienced significant changes over the past 20 years. Pressure from anthropogenic activities such as deforestation, construction, and sand mining around Sungai Terengganu, tourism, farming and agricultural has creating imbalance between environmental processes and response in Kenyir Lake. The aim of the study is to estimate the production of sediment yield (Muatan Sedimen) (MS) (tonnes/km2/year) in Kenyir Lake Basin. 21 sampling stations were chosen along Kenyir Lake to represent the upstream and downstream. The statistical analysis proved that the correlation and regression relationship between Total Suspended Solid (TSS), MS and area of catchment. MS showed a weak correlation and insignificant relationship of regression caused by the anthropogenic factors and uncertain climate changes. These sedimentation problems due to unsustainable land use changes, river bank erosion problems and active construction activity around the Kenyir Lake Basin. This study suggests the sedimentation management methods including land use settlement, cliff erosion problems, settlement and negotiable of uncontrolled development operations in Kenyir Lake and the integrated of river and lake management methods based on Integrated River Basin Management (IRBM) in Kenyir Lake Basin is recommended.  


2018 ◽  
Vol 10 (8) ◽  
pp. 1270 ◽  
Author(s):  
Qingyu Guan ◽  
Liqin Yang ◽  
Ninghui Pan ◽  
Jinkuo Lin ◽  
Chuanqi Xu ◽  
...  

The arid region of northwest China provides a unique terrestrial ecosystem to identify the response of vegetation activities to natural and anthropogenic changes. To reveal the influences of climate and anthropogenic factors on vegetation, the Normalized Difference Vegetation Index (NDVI), climate data, and land use and land cover change (LUCC) maps were used for this study. We analyzed the spatiotemporal change of NDVI during 2000–2015. A partial correlation analysis suggested that the contribution of precipitation (PRE) and temperature (TEM) on 95.43% of observed greening trends was 47% and 20%, respectively. The response of NDVI in the eastern section of the Qilian Mountains (ESQM) and the western section of the Qilian Mountains (WSQM) to PRE and TEM showed opposite trends. The multiple linear regressions used to quantify the contribution of anthropogenic activity on the NDVI trend indicated that the ESQM and oasis areas were mainly affected by anthropogenic activities (26%). The observed browning trend in the ESQM was attributed to excessive consumption of natural resources. A buffer analysis and piecewise regression methods were further applied to explore the influence of urbanization on NDVI and its change rate. The study demonstrated that urbanization destroys the vegetation cover within the developed city areas and extends about 4 km beyond the perimeter of urban areas and the NDVI of buffer cities (counties) in the range of 0–4 km (0–3 km) increased significantly. In the range of 5–15 (4–10) km (except for Jiayuguan), climate factors were the major drivers of a slight downtrend in the NDVI. The relationship of land use change and NDVI trends showed that construction land, urban settlement, and farmland expanded sharply by 171.43%, 60%, and 10.41%, respectively. It indicated that the rapid process of urbanization and coordinated urban-rural development shrunk ecosystem services.


Sign in / Sign up

Export Citation Format

Share Document