Damping and Inertia Coefficients for a Rolling or Swaying Vertical Strip

1963 ◽  
Vol 7 (04) ◽  
pp. 19-23
Author(s):  
J. Kotik

Ursell's exact expression3 for the wave-amplitude coefficient for a swaying or rolling vertical strip is evaluated numerically over the entire frequency range. The added-mass and inertia coefficients are then obtained numerically, also over the entire frequency range, via the Kramers-Kronig relations.

1990 ◽  
Vol 69 (4) ◽  
pp. 1372-1379 ◽  
Author(s):  
D. Navajas ◽  
R. Farre ◽  
J. Canet ◽  
M. Rotger ◽  
J. Sanchis

Respiratory impedance (Zrs) was measured between 0.25 and 32 Hz in seven anesthetized and paralyzed patients by applying forced oscillation of low amplitude at the inlet of the endotracheal tube. Effective respiratory resistance (Rrs; in cmH2O.l-1.s) fell sharply from 6.2 +/- 2.1 (SD) at 0.25 Hz to 2.3 +/- 0.6 at 2 Hz. From then on, Rrs decreased slightly with frequency down to 1.5 +/- 0.5 at 32 Hz. Respiratory reactance (Xrs; in cmH2O.l-1.s) was -22.2 +/- 5.9 at 0.25 Hz and reached zero at approximately 14 Hz and 2.3 +/- 0.8 at 32 Hz. Effective respiratory elastance (Ers = -2pi x frequency x Xrs; in cmH2O/1) was 34.8 +/- 9.2 at 0.25 Hz and increased markedly with frequency up to 44.2 +/- 8.6 at 2 Hz. We interpreted Zrs data in terms of a T network mechanical model. We represented the proximal branch by central airway resistance and inertance. The shunt pathway accounted for bronchial distensibility and alveolar gas compressibility. The distal branch included a Newtonian resistance component for tissues and peripheral airways and a viscoelastic component for tissues. When the viscoelastic component was represented by a Kelvin body as in the model of Bates et al. (J. Appl. Physiol. 61: 873-880, 1986), a good fit was obtained over the entire frequency range, and reasonable values of parameters were estimated. The strong frequency dependence of Rrs and Ers observed below 2 Hz in our anesthetized paralyzed patients could be mainly interpreted in terms of tissue viscoelasticity. Nevertheless, the high Ers we found with low volume excursions suggests that tissues also exhibit plasticlike properties.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Syed Mushhad Mustuzhar Gilani ◽  
Muhammad Tamur Sultan ◽  
Zeng Shuai ◽  
Asif Kabir

This study aimed to explore a metallic striped grid array planar antenna, analyze it numerically in terms of its parameters, and optimize it for best performance. It may be an appropriate candidate for long-range point-to-point connectivity in wireless sensor networks. Antenna gain and frequency impedance bandwidth are two important performance parameters. For an efficient antenna, its gain should be high while maintaining operating bandwidth wide enough to accommodate the entire frequency range for which it has been designed. Concurrently, antenna size should also be small. In this study, antenna dimensions were kept as small as possible without compromising its performance. Its dimensions were 300 mm × 210 mm × 9.9 mm, which made it compact and miniature. It had a maximum gain of 16.72 dB at 2.45 GHz and maximum frequency impedance bandwidth of 7.68% relative to 50 Ω. It operated across a frequency band ranging from 2.38 GHz to 2.57 GHz, encapsulating the entire ISM 2.4 GHz band. Its radiation efficiency remained above 93% in this band with a maximum of 98.5% at 2.45 GHz. Moreover, it also had narrow HPBWs in horizontal and vertical planes having values of 18.52° and 31.25°, respectively.


1989 ◽  
Vol 66 (1) ◽  
pp. 350-359 ◽  
Author(s):  
G. M. Barnas ◽  
K. Yoshino ◽  
D. Stamenovic ◽  
Y. Kikuchi ◽  
S. H. Loring ◽  
...  

We measured chest wall "pathway impedances" (ratios of pressure changes to rates of volume displacement at the surface) with esophageal and gastric balloons and inductance plethysmographic belts around the rib cage and abdomen during forced volume oscillations (5% vital capacity, 0.5–4 Hz) at the mouth of five relaxed, seated subjects. Volume displacements of the total chest wall surface, measured by summing the rib cage and abdominal signals, approximated measurements using volume-displacement, body plethysmography over the entire frequency range. Resistance (R) and elastance (E) of the diaphragm-abdomen pathway were several times greater than those of the rib cage pathway, except at the highest frequencies where diaphragm-abdominal E was small. R and E of the diaphragm-abdomen pathway and of the rib cage pathway showed the same frequency dependencies as that of the total chest wall: R decreased markedly as frequency increased, and E (especially in the diaphragm-abdomen) decreased at the highest frequencies. These results suggest that the chest wall can be reasonably modeled, over the frequency range studied, as a system with two major pathways for displacement. Each pathway seems to exhibit behavior that reflects nonlinear, rate-independent dissipation as well as viscoelastic properties. Impedances of these pathways are useful indexes of changes in chest wall mechanical behavior in different situations.


1987 ◽  
Vol 62 (2) ◽  
pp. 414-420 ◽  
Author(s):  
A. C. Jackson ◽  
K. R. Lutchen

Mechanical impedances between 4 and 64 Hz of the respiratory system in dogs have been reported (A.C. Jackson et al. J. Appl. Physiol. 57: 34–39, 1984) previously by this laboratory. It was observed that resistance (the real part of impedance) decreased slightly with frequency between 4 and 22 Hz then increased considerably with frequency above 22 Hz. In the current study, these impedance data were analyzed using nonlinear regression analysis incorporating several different lumped linear element models. The five-element model of Eyles and Pimmel (IEEE Trans. Biomed. Eng. 28: 313–317, 1981) could only fit data where resistance decreased with frequency. However, when the model was applied to these data the returned parameter estimates were not physiologically realistic. Over the entire frequency range, a significantly improved fit was obtained with the six-element model of DuBois et al. (J. Appl. Physiol. 8: 587–594, 1956), since it could follow the predominate frequency-dependent characteristic that was the increase in resistance. The resulting parameter estimates suggested that the shunt compliance represents alveolar gas compressibility, the central branch represents airways, and the peripheral branch represents lung and chest wall tissues. This six-element model could not fit, with the same set of parameter values, both the frequency-dependent decrease in Rrs and the frequency-dependent increase in resistance. A nine-element model recently proposed by Peslin et al. (J. Appl. Physiol. 39: 523–534, 1975) was capable of fitting both the frequency-dependent decrease and the frequency-dependent increase in resistance. However, the data only between 4 and 64 Hz was not sufficient to consistently determine unique values for all nine parameters.


2020 ◽  
Vol 60 (5) ◽  
pp. 1068-1079 ◽  
Author(s):  
Krista LePiane ◽  
Christopher J Clark

Synopsis Owls have specialized feather features hypothesized to reduce sound produced during flight. One of these features is the velvet, a structure composed of elongated filaments termed pennulae that project dorsally from the upper surface of wing and tail feathers. There are two hypotheses of how the velvet functions to reduce sound. According to the aerodynamic noise hypothesis, the velvet reduces sound produced by aerodynamic processes, such as turbulence development on the surface of the wing. Alternatively, under the structural noise hypothesis, the velvet reduces frictional noise produced when two feathers rub together. The aerodynamic noise hypothesis predicts impairing the velvet will increase aerodynamic flight sounds predominantly at low frequency, since turbulence formation predominantly generates low frequency sound; and that changes in sound levels will occur predominantly during the downstroke, when aerodynamic forces are greatest. Conversely, the frictional noise hypothesis predicts impairing the velvet will cause a broadband (i.e., across all frequencies) increase in flight sounds, since frictional sounds are broadband; and that changes in sound levels will occur during the upstroke, when the wing feathers rub against each other the most. Here, we tested these hypotheses by impairing with hairspray the velvet on inner wing feathers (P1-S4) of 13 live barn owls (Tyto alba) and measuring the sound produced between 0.1 and 16 kHz during flapping flight. Relative to control flights, impairing the velvet increased sound produced across the entire frequency range (i.e., the effect was broadband) and the upstroke increased more than the downstroke, such that the upstroke of manipulated birds was louder than the downstroke, supporting the frictional noise hypothesis. Our results suggest that a substantial amount of bird flight sound is produced by feathers rubbing against feathers during flapping flight.


2008 ◽  
Vol 599 ◽  
pp. 205-228 ◽  
Author(s):  
S. P. DAS ◽  
E. J. HOPFINGER

In this paper we present results on parametrically forced gravity waves in a circular cylinder in the limit of large fluid-depth approximation. The phase diagram that shows the stability-forcing-amplitude threshold and the wave-breaking threshold has been determined in the frequency range of existence of the lowest axisymmetric wave mode. The instability is shown to be supercritical for forcing frequencies at and above the natural frequency and subcritical below in a frequency range where the instability and breaking thresholds do not coincide. Above the instability threshold, the growth in wave amplitude is exponential, but with an initial time delay. The wave-amplitude response curve of stationary wave motions exhibits steady-state wave motion, amplitude modulations and bifurcations to other wave modes at frequencies where the parametric instability boundary of the axisymmetric mode overlaps with the neighbouring modes. The amplitude modulations are either on a slow time scale or exhibit period tripling and intermittent period tripling, without wave breaking. In the wave-breaking regime, a finite-time singularity may occur with intense jet formation, a phenomenon demonstrated by others in fluids of high viscosity and large surface tension. Here, this singular behaviour with jet formation is demonstrated for a low viscosity and low kinematic surface tension liquid. The results indicate that the jet is driven by inertial collapse of the cavity created at the wave trough. Therefore, the jet velocity is determined by the wave fluid velocity but depends, in addition, on kinematic surface tension and viscosity as these affect the last stable wave crest shape and the cavity size.


Author(s):  
Ofer Schwartz ◽  
Sharon Gannot

AbstractThe problem of blind and online speaker localization and separation using multiple microphones is addressed based on the recursive expectation-maximization (REM) procedure. A two-stage REM-based algorithm is proposed: (1) multi-speaker direction of arrival (DOA) estimation and (2) multi-speaker relative transfer function (RTF) estimation. The DOA estimation task uses only the time frequency (TF) bins dominated by a single speaker while the entire frequency range is not required to accomplish this task. In contrast, the RTF estimation task requires the entire frequency range in order to estimate the RTF for each frequency bin. Accordingly, a different statistical model is used for the two tasks. The first REM model is applied under the assumption that the speech signal is sparse in the TF domain, and utilizes a mixture of Gaussians (MoG) model to identify the TF bins associated with a single dominant speaker. The corresponding DOAs are estimated using these bins. The second REM model is applied under the assumption that the speakers are concurrently active in all TF bins and consequently applies a multichannel Wiener filter (MCWF) to separate the speakers. As a result of the assumption of the concurrent speakers, a more precise TF map of the speakers’ activity is obtained. The RTFs are estimated using the outputs of the MCWF-beamformer (BF), which are constructed using the DOAs obtained in the previous stage. Next, using the linearly constrained minimum variance (LCMV)-BF that utilizes the estimated RTFs, the speech signals are separated. The algorithm is evaluated using real-life scenarios of two speakers. Evaluation of the mean absolute error (MAE) of the estimated DOAs and the separation capabilities, demonstrates significant improvement w.r.t. a baseline DOA estimation and speaker separation algorithm.


Author(s):  
J. Falzarano ◽  
R. Kota ◽  
I. Esparza

Abstract For ships, rolling motion is the most critical due to the possibility of capsizing. In a regular (periodic) sea, if no bounded steady state solutions exist, then capsizing may be imminent. Determining for exactly which wave amplitude and frequency the steady-state solutions disappear or become unstable is of great practical importance. In previous works (Falzarano, Esparza, and Taz Ul Mulk, 1994) and abstracted presentations (Falzarano, 1993), the global transient dynamics of large amplitude ship rolling motion was studied. The effect on the steady-state solutions of changing wave frequency for a fixed wave amplitudes was studied. It was shown how the in-phase and out-of-phase solutions evolve as the frequency passes through the linear natural frequency. For small wave amplitudes (external forcing) there exists a single steady-state throughout the frequency range, for moderate wave amplitudes there exists a frequency range where multiple steady state harmonic solutions exists. As the wave amplitude was increased further there existed a frequency range where no steady-state harmonic solution existed. In the present work, the very large amplitude ship rolling motion in the region where no steady-state solutions exist will be studied in more detail. Moreover, the mechanisms (bifurcations) that cause this type of behavior to evolve from more simple behavior will be studied using a combination of both frequency response curves and Poincaré maps. It is expected that global chaotic bifurcations such as those previously described (e.g., Thompson and Stewart, 1989) will be identified.


Sign in / Sign up

Export Citation Format

Share Document