A Note on the Design of Wake-Adapted Propellers

1980 ◽  
Vol 24 (04) ◽  
pp. 227-231
Author(s):  
Gilbert Dyne

Problems associated with the design of wake-adapted propellers are illustrated by results obtained from a simple propeller and wake model. It is shown that the widely used approach of the vortex theory gives much-too-low induced axial velocities at the inner radii of the propeller, which results in too-low blade pitch ratios. The reason for this is that no regard is paid to the fact that the vorticity of the approaching flow is changed by the propeller. If this changing vorticity is introduced in the vortex theory, its shortcomings are eliminated. An effect of the improvement is that the effective wake at the propeller plane differs from the nominal wake. The difference depends upon the propeller load. The propeller is shown to have a leveling effect on a nonuniform axisymmetric nominal wake.

A full derivation is presented for the vortex theory of hovering flight outlined in preliminary reports. The theory relates the lift produced by flapping wings to the induced velocity and power of the wake. Suitable forms of the momentum theory are combined with the vortex approach to reduce the mathematical complexity as much as possible. Vorticity is continuously shed from the wings in sympathy with changes in wing circulation. The vortex sheet shed during a half-stroke convects downwards with the induced velocity field, and should be approximately planar at the end of a half-stroke. Vorticity within the sheet will roll up into complicated vortex rings, but the rate of this process is unknown. The exact state of the sheet is not crucial to the theory, however, since the impulse and energy of the vortex sheet do not change as it rolls up, and the theory is derived on the assumption that the extent of roll-up is negligible. The force impulse required to generate the sheet is derived from the vorticity of the sheet, and the mean wing lift is equal to that impulse divided by the period of generation. This method of calculating the mean lift is suitable for unsteady aerodynamic lift mechanisms as well as the quasi-steady mechanism. The relation between the mean lift and the impulse of the resulting vortex sheet is used to develop a conceptual artifice - a pulsed actuator disc - that approximates closely the net effect of the complicated lift forces produced in hovering. T he disc periodically applies a pressure impulse over some defined area, and is a generalized form of the Froude actuator disc from propeller theory. The pulsed disc provides a convenient link between circulatory lift and the powerful momentum and vortex analyses of the wake. The induced velocity and power of the wake are derived in stages, starting with the simple Rankine-Froude theory for the wake produced by a Froude disc applying a uniform, continuous pressure to the air. The wake model is then improved by considering a ‘modified’ Froude disc exerting a continuous, but non-uniform pressure. This step provides a spatial correction factor for the Rankine-Froude theory, by taking into account variations in pressure and circulation over the disc area. Finally, the wake produced by a pulsed Froude disc is analysed, and a temporal correction factor is derived for the periodic application of spatially uniform pressures. Both correction factors are generally small, and can be treated as independent perturbations of the Rankine-Froude model. Thus the corrections can be added linearly to obtain the total correction for the general case of a pulsed actuator disc with spatial and temporal pressure variations. The theory is compared with Rayner’s vortex theory for hovering flight. Under identical test conditions, numerical results from the two theories agree to within 3%. Rayner presented approximations from his results to be used when applying his theory to hovering animals. These approximations are not consistent with my theory or with classical propeller theory, and reasons for the discrepancy are suggested.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8313
Author(s):  
Xin Liu ◽  
Lailong Li ◽  
Shaoping Shi ◽  
Xinming Chen ◽  
Songhua Wu ◽  
...  

Huaneng Rudong 300 MW offshore wind farm project is located in eastern China. The wake effect is one of the major concerns for wind farm operators, as all 70 units are plotted in ranks, and the sea surface roughness is low. This paper investigated the wake intensity by combining a field test and a numerical simulation. To carry out further yaw optimization, a Gaussian wake model was adopted. Firstly, a 3D Light Detection and Ranging device (LiDAR) was used to capture the features in both horizontal and vertical directions of the wake. It indicated that Gaussian wake model can precisely predict the characteristics under time average and steady state in the wind farm. The predicted annual energy production (AEP) of the whole wind farm by the Gaussian model is compared with the calculation result of the actuator line (AL)-based LES method, and the difference between the two methods is mostly under 10%.


2020 ◽  
Vol 9 (1) ◽  
pp. 7
Author(s):  
Igor Shugan ◽  
Yang-Yih Chen

We present the kinematic model of the ship wake in the presence of horizontal subsurface current linearly varying with the depth of water. An extension of the Whitham–Lighthill theory for calm water is developed. It has been established that the structure of ship waves under the action of a shear flow can radically differ from the classical Kelvin ship wake model. Co propagating ship and shear current lead to increasing the total wedge angle up to full one 180° and decreases for the counter shear current. At relatively large unidirectional values of the shear current, cusp waves in the vicinity of the wedge boundary are represented by transverse waves and, conversely, by diverging waves directed almost perpendicular to the ship track for the opposite shear current. The presence of a shear flow crossing the direction of the ship’s movement gives a strong asymmetry of the wake. An increase in the perpendicular shear flow leads to an increase in the difference between the angles of the wake arms. The limiting value of the shear current corresponds to one or both arms angles equal to 90°. Transverse and divergent edge waves for this limiting case coincide.


1962 ◽  
Vol 14 ◽  
pp. 149-155 ◽  
Author(s):  
E. L. Ruskol

The difference between average densities of the Moon and Earth was interpreted in the preceding report by Professor H. Urey as indicating a difference in their chemical composition. Therefore, Urey assumes the Moon's formation to have taken place far away from the Earth, under conditions differing substantially from the conditions of Earth's formation. In such a case, the Earth should have captured the Moon. As is admitted by Professor Urey himself, such a capture is a very improbable event. In addition, an assumption that the “lunar” dimensions were representative of protoplanetary bodies in the entire solar system encounters great difficulties.


1997 ◽  
Vol 161 ◽  
pp. 491-504 ◽  
Author(s):  
Frances Westall

AbstractThe oldest cell-like structures on Earth are preserved in silicified lagoonal, shallow sea or hydrothermal sediments, such as some Archean formations in Western Australia and South Africa. Previous studies concentrated on the search for organic fossils in Archean rocks. Observations of silicified bacteria (as silica minerals) are scarce for both the Precambrian and the Phanerozoic, but reports of mineral bacteria finds, in general, are increasing. The problems associated with the identification of authentic fossil bacteria and, if possible, closer identification of bacteria type can, in part, be overcome by experimental fossilisation studies. These have shown that not all bacteria fossilise in the same way and, indeed, some seem to be very resistent to fossilisation. This paper deals with a transmission electron microscope investigation of the silicification of four species of bacteria commonly found in the environment. The Gram positiveBacillus laterosporusand its spore produced a robust, durable crust upon silicification, whereas the Gram negativePseudomonas fluorescens, Ps. vesicularis, andPs. acidovoranspresented delicately preserved walls. The greater amount of peptidoglycan, containing abundant metal cation binding sites, in the cell wall of the Gram positive bacterium, probably accounts for the difference in the mode of fossilisation. The Gram positive bacteria are, therefore, probably most likely to be preserved in the terrestrial and extraterrestrial rock record.


1994 ◽  
Vol 144 ◽  
pp. 421-426
Author(s):  
N. F. Tyagun

AbstractThe interrelationship of half-widths and intensities for the red, green and yellow lines is considered. This is a direct relationship for the green and yellow line and an inverse one for the red line. The difference in the relationships of half-widths and intensities for different lines appears to be due to substantially dissimilar structuring and to a set of line-of-sight motions in ”hot“ and ”cold“ corona regions.When diagnosing the coronal plasma, one cannot neglect the filling factor - each line has such a factor of its own.


Author(s):  
Jules S. Jaffe ◽  
Robert M. Glaeser

Although difference Fourier techniques are standard in X-ray crystallography it has only been very recently that electron crystallographers have been able to take advantage of this method. We have combined a high resolution data set for frozen glucose embedded Purple Membrane (PM) with a data set collected from PM prepared in the frozen hydrated state in order to visualize any differences in structure due to the different methods of preparation. The increased contrast between protein-ice versus protein-glucose may prove to be an advantage of the frozen hydrated technique for visualizing those parts of bacteriorhodopsin that are embedded in glucose. In addition, surface groups of the protein may be disordered in glucose and ordered in the frozen state. The sensitivity of the difference Fourier technique to small changes in structure provides an ideal method for testing this hypothesis.


Author(s):  
P. Maupin-Szamier ◽  
T. D. Pollard

We have studied the destruction of rabbit muscle actin filaments by osmium tetroxide (OSO4) to develop methods which will preserve the structure of actin filaments during preparation for transmission electron microscopy.Negatively stained F-actin, which appears as smooth, gently curved filaments in control samples (Fig. 1a), acquire an angular, distorted profile and break into progressively shorter pieces after exposure to OSO4 (Fig. 1b,c). We followed the time course of the reaction with viscometry since it is a simple, quantitative method to assess filament integrity. The difference in rates of decay in viscosity of polymerized actin solutions after the addition of four concentrations of OSO4 is illustrated in Fig. 2. Viscometry indicated that the rate of actin filament destruction is also dependent upon temperature, buffer type, buffer concentration, and pH, and requires the continued presence of OSO4. The conditions most favorable to filament preservation are fixation in a low concentration of OSO4 for a short time at 0°C in 100mM sodium phosphate buffer, pH 6.0.


Author(s):  
Y. H. Liu

Ordered Ni3Fe crystals possess a LI2 type superlattice similar to the Cu3Au structure. The difference in slip behavior of the superlattice as compared with that of a disordered phase has been well established. Cottrell first postulated that the increase in resistance for slip in the superlattice structure is attributed to the presence of antiphase domain boundaries. Following Cottrell's domain hardening mechanism, numerous workers have proposed other refined models also involving the presence of domain boundaries. Using the anomalous X-ray diffraction technique, Davies and Stoloff have shown that the hardness of the Ni3Fe superlattice varies with the domain size. So far, no direct observation of antiphase domain boundaries in Ni3Fe has been reported. Because the atomic scattering factors of the elements in NijFe are so close, the superlattice reflections are not easily detected. Furthermore, the domain configurations in NioFe are thought to be independent of the crystallographic orientations.


Sign in / Sign up

Export Citation Format

Share Document