Cross-Wind Influence on Low Aspect Ratio Wings at Low Reynolds Numbers

Author(s):  
Amir Karimi Noughabi ◽  
Mehran Tadjfar

The aerodynamics of the low aspect ratio (LAR) wings is of outmost importance in the performance of the fixed-wing micro air vehicles (MAVs). The flow around these wings is widely influenced by three dimensional (3D) phenomena: including wing-tip vortices, formation of laminar bubble, flow separation and reattachment, laminar to turbulent transition or any combination of these phenomena. All the recent studies consider the aerodynamic characteristics of the LAR wings under the effect of the direct wind. Here we focus on the numerical study of the influence of cross-wind on flow over the inverse Zimmerman wings with the aspect ratios (AR) between 1 and 2 at Reynolds numbers between 6×104 and 105. We have considered cross-wind’s angles from 0° to 40° and angle of attack from 0° to 12°. The results show that lift and drag coefficient generally decrease when the angle of the cross-wind is increased.

Author(s):  
Rodolfo T. Gonçalves ◽  
Dennis M. Gambarine ◽  
Aline M. Momenti ◽  
Felipe P. Figueiredo ◽  
André L. C. Fujarra

Experiments regarding flow-induced vibration on floating rounded squared section cylinders with low aspect ratio were carried out in an ocean basin equipped with a rotating-arm apparatus. Floating squared section cylinders with rounded edges and aspect ratios of L/D = 2.0 were elastically supported by a set of linear springs in order to provide low structural damping to the system. Two different incidence angles were tested, namely 0 and 45 degrees. The Reynolds numbers covered the range from 2,000 to 30,000. The aim was to understand the flow-induced vibrations around single columns, gathering information for further understanding the causes for the Vortex-Induced Motions in semi-submersible and TLP platforms. Experiments on circular and squared sections cylinders (without rounded edges) were also carried out to compare the results with the rounded square section cylinders (with rounded edges). The amplitude results for in-line, transverse and yaw amplitude for 0-degree models showed to be higher for squared section cylinders compared to those for the rounded square section cylinders. No significant difference between the 45-degree models was observed. The results of ratio between frequency of motion in the transverse direction and natural frequency in still water confirmed the vortex-induced vibration behavior for the squared and rounded square section cylinders for 45-degree incidence; and also the galloping characteristics for 0-degree incidence cases. The rounded effect on the square section cylinders showed to be important only for reduced velocity larger than 8, which is probably related to the position of the separation point that changes around the rounded edge, behavior that did not occurr for the squared edge that fixed the separation point for any reduced velocity.


2007 ◽  
Vol 339 ◽  
pp. 377-381
Author(s):  
Xiao Quan Zhang ◽  
L. Tian

Micro Air Vehicles (MAVs) are catching more and more attentions for their broad application in civilian and military fields. Since the theories on the aerodynamics of low Reynolds number are not maturely presented and the wind-tunnel experiments cost long periods and great expenses. The numerical simulation based on computational fluid dynamics (CFD) is a good method to choose. Through three-dimensional simulation of the wings, the aerodynamic characteristics of the flows around MAVs can be easily obtained. The tip vortices produced around low-Reynolds-number and low-aspect-ratio wings can increase the lift and stall angles. The result of numerical simulation can be used as references of theory analysis and wind-tunnel experiments.


Author(s):  
A. J. Sanders ◽  
K. K. Hassan ◽  
D. C. Rabe

Experiments are performed on a modern design transonic shroudless low-aspect ratio fan blisk that experienced both subsonic/transonic and supersonic stall-side flutter. High-response flush mounted miniature pressure transducers are utilized to measure the unsteady aerodynamic loading distribution in the tip region of the fan for both flutter regimes, with strain gages utilized to measure the vibratory response at incipient and deep flutter operating conditions. Numerical simulations are performed and compared with the benchmark data using an unsteady three-dimensional nonlinear viscous computational fluid dynamic (CFD) analysis, with the effects of tip clearance, vibration amplitude, and the number of time steps-per-cycle investigated. The benchmark data are used to guide the validation of the code and establish best practices that ensure accurate flutter predictions.


1991 ◽  
Vol 35 (01) ◽  
pp. 63-72
Author(s):  
Todd McComb

This paper uses an asymptotic procedure to generate analytic solutions to the low-aspect-ratio problem of flat ship theory, in the limit for a very fast ship. The first two terms of the solution are worked out for hulls of parabolic planform and with 20 arbitrary constants in the expression for the draft. Optimizations are then performed for lift and drag on a smaller class of hulls. Analytic solutions were found by using symbolic computation, and the results are discussed. Optimal hulls are presented for various values of the ship's speed, optimized with both total lift and static lift held fixed. The optimization solution in the limit as the ship's speed goes to infinity gives independence of some constants in the expression for the hull.


2014 ◽  
Vol 58 (01) ◽  
pp. 1-19
Author(s):  
Michael J. Hughes ◽  
Young T. Shen

The behavior of the force on a rudder changes significantly after the inception of stall, requiring different mathematical formulae to compute rudder forces prior-and poststall. Determining the inception angle at which stall occurs is important for predicting the rudder force on a maneuvering ship. A method to compute the inception angle of stall on a rudder is presented in this article. The theoretical formulation is based on a flow similarity approach, which relates three-dimensional rudder stall inception with two-dimensional airfoil data. Rudders are low-aspect ratio wings, and the three-dimensional lift is based on the low-aspect ratio wing theory. The two-dimensional airfoil stall data are obtained from National Advisory Committee for Aeronautics (NACA) reports. The derived theory is first validated with wind tunnel data from foils with a NACA 0015 profile of aspect ratios 1, 2, and 3. The theory is also validated with data from foils with a NACA 0012 profile and an aspect ratio of 2, 3, and 6.


2001 ◽  
Vol 105 (1045) ◽  
pp. 135-149 ◽  
Author(s):  
M. I. Woods ◽  
J. F. Henderson ◽  
G. D. Lock

Abstract This paper describes power requirements for micro air vehicles, flying in the Reynolds number regime of -lO*. Three flight modes have been researched: fixed wing, rotary wing and flapping wing. For each mode, the literature in the public domain has been reviewed to obtain appropriate lift and drag coefficient data at these low Reynolds numbers. Energy and power requirements for the three flight modes have been calculated and an optimisation procedure has been utilised to evaluate the most efficient flight mode and configuration for a variety of specified missions. The effect of wind-speed on the optimal solution has been examined. It has been discovered that when there is no hover requirement, fixed wing flight is always most energy efficient for the micro air vehicle. However, if there is a hover requirement, the suitability of flapping or rotary wing flight is dependent on the mission profile and ambient windspeed.


2011 ◽  
Vol 672 ◽  
pp. 521-544 ◽  
Author(s):  
STUART J. COGAN ◽  
KRIS RYAN ◽  
GREGORY J. SHEARD

A numerical investigation was conducted into the different flow states, and bifurcations leading to changes of state, found in open cylinders of medium to moderate depth driven by a constant rotation of the vessel base. A combination of linear stability analysis, for cylinders of numerous height-to-radius aspect ratios (H/R), and nonlinear stability analysis and three-dimensional simulations for a cylinder of aspect ratio 1.5, has been employed. Attention is focused on the breaking of SO(2) symmetry. A comprehensive map of transition Reynolds numbers as a function of aspect ratio is presented by combining a detailed stability analysis with the limited existing data from the literature. For all aspect ratios considered, the primary instabilities are identified as symmetry-breaking Hopf bifurcations, occurring at Reynolds numbers well below those of the previously reported axisymmetric Hopf transitions. It is revealed that instability modes with azimuthal wavenumbers m = 1, 3 and 4 are the most unstable in the range 1.0 < H/R < 4, and that numerous double Hopf bifurcation points exist. Critical Reynolds numbers generally increase with cylinder aspect ratio, though a decrease in stability occurs between aspect ratios 1.5 and 2.0, where a local minimum in critical Reynolds number occurs. For H/R = 1.5, a detailed characterisation of instability modes is given. It is hypothesized that the primary instability leading to transition from steady axisymmetric flow to unsteady three-dimensional flow is related to deformation of shear layers that are present in the flow, in particular at the interfacial region between the vortex breakdown bubble and the primary recirculation.


2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Taravat Khadivi ◽  
Eric Savory

The flow regimes associated with 2:1 aspect ratio elliptical planform cavities of varying depth immersed in a turbulent boundary layer at a Reynolds number of 8.7 × 104, based on the minor axis of the cavity, have been quantified from particle image velocimetry measurements and three-dimensional steady computational fluid dynamics simulations (Reynolds stress model closure). Although these elliptical cavity flows have some similarities with nominally two-dimensional and rectangular cases, three-dimensional effects due to the low aspect ratio and curvature of the walls give rise to features exclusive to low aspect ratio elliptical cavities, including formation of cellular structures at intermediate depths and vortex structures within and downstream of the cavity.


Sign in / Sign up

Export Citation Format

Share Document