Effects of Nonlinearities on Hull Springing

1984 ◽  
Vol 21 (04) ◽  
pp. 356-363
Author(s):  
Armin W. Troesch

The wave-induced vibration of the main hull girder, commonly called springing, is discussed. When the frequency of the wave excitation force matches the natural frequency of ship's hull, large bending stresses can result. Through the use of experimental and theoretical results, the effect of springing on a Great Lakes bulk carrier's midship bending moment is estimated. Both the linear and nonlinear excitations are considered. The numerical examples given show that the total response is critically dependent upon the vessel's natural frequency and speed in addition to the shape of the sea spectrum that the vessel is operating in. In some instances, the nonlinearities can account for one third of the total response.

Author(s):  
Lyuben D. Ivanov

A method is proposed for calculating the hull girder bending stresses following the procedure in the class rules but in probabilistic terms, i.e. the still water and the wave-induced bending moments; the total hull girder bending moment; the hull girder section modulus and the hull girder bending stresses are treated as random variables with corresponding probabilistic distributions. The still water and wave-induced hull girder hogging and sagging loads are presented in probabilistic format as one phenomenon, i.e. using bi-modal probability density functions. The probabilistic distribution of the total hull girder load is calculated using the rules of the composition of the distribution laws of the constituent variables. After that, the hull girder geometric properties are presented in probabilistic format as annual distributions and distributions for any given life-span. Thus, it becomes possible to calculate both the annual probabilistic distributions and the probabilistic distribution for any given ship’s life span of the hull girder stresses. Individual amplitudes statistical analysis and extreme value statistics are used. Then, the probability of exceeding the permissible hull girder bending stresses in the class rules is calculated. An example is given for 25K DWT bulk carrier.


Author(s):  
Tomoki Takami ◽  
Yusuke Komoriyama ◽  
Takahiro Ando ◽  
Kazuhiro Iijima

Abstract This paper describes a series of towing tank tests using a scaled model of a recent container ship for validating the First Order Reliability Method (FORM) based approach to predict the maximum response. The FORM based approach is adopted in conjunction with the nonlinear strip method as an estimation method for the most probable wave episodes (MPWEs) leading to the given extreme wave-induced vertical bending moments (VBMs). Tank tests under the pre-determined MPWEs are conducted to evaluate the extreme wave-induced VBMs. Numerical simulations based on the coupled Computational Fluid Dynamics (CFD) and Finite Element Analysis (FEA) are also conducted and are compared with the test results under the MPWEs. Furthermore, to estimate the extreme VBM statistics, tank tests under random irregular waves are conducted. A series of validations of the probability of exceedances (PoEs) of the VBM evaluated from the FORM based approach is carried out. The effect of hydroelastic (whipping) vibrations on the extreme VBM statistics are finally discussed.


Author(s):  
C. Guedes Soares ◽  
Josˇko Parunov

The paper aims at quantifying the changes in notional reliability levels that result from redesigning an existing suezmax tanker to comply with new Joint Tanker Project (JTP) rule requirement for ultimate vertical bending moment capacity. The probability of structural failure is calculated using a first-order reliability method. The evaluation of the wave-induced load effects that occur during long-term operation of the ship in the seaway is carried out in accordance to IACS recommended procedure. Comparative analysis of long-term distributions of vertical wave bending moment calculated by two independent computer seakeeping codes is performed. The still water loads are defined on the basis of a statistical analysis of loading conditions from the loading manual. The ultimate collapse bending moment of the midship cross section, which is used as the basis for the reliability formulation, is evaluated by JTP single-step procedure and by program HULLCOLL for progressive collapse analysis of ship hull-girders. The reliability assessment is performed for “as-built” and “corroded” states of the existing ship and a reinforced design configuration complying with new JTP rules. It is shown that hull-girder failure probability of suezmax tanker reinforced according to new JTP rules is reduced several times. Sensitivity analysis and a parametric study are performed to investigate the variability of results to the change of parameters of pertinent random variables within their plausible ranges.


Author(s):  
P T Pedersen ◽  
J J Jensen

A simple but rational procedure for prediction of extreme wave-induced hull girder bending moment in slender mono-hull displacement vessels is presented. The procedure takes into account main ship hull characteristics such as length, breadth, draught, block coefficient, bow flare coefficient, forward speed, and hull flexibility. The wave-induced loads are evaluated for specific operational profiles. Non-linearity in the wave bending moment is modelled using results derived from a second-order strip theory and water entry solutions for wedge-type sections. Hence, bow flare slamming is accounted for through a momentum type of approach. The stochastic properties of this non-linear response are calculated through a monotonic Hermite transformation. In addition, the impulse loading attributable to, for example, bottom slamming or a rapid change in bow flare is included using a modal expansion in the two lowest vertical vibration modes. These whipping vibrations are added to the wave frequency non-linear response, taking into account the rise time of the impulse response as well as the phase lag between the occurrence of the maximum non-linear load and the maximum impulse load. Previous results for the sagging bending moment are validated by comparison with fully non-linear strip theory calculations and supplemented with new closed form results for the hogging bending moment. Focus is on the extreme hull girder hogging bending moment. Owing to the few input parameters, this procedure can be used to estimate the wave-induced bending moments at the conceptual design phase. Another application area is for novel single-hull ship types not presently covered by the rules of the classification societies. As one application example the container ship MSC Napoli is considered. Further validations are needed, however, in order to select proper values of the parameters entering the analytical form of the slamming impulse.


Author(s):  
Gaute Storhaug ◽  
Erlend Moe ◽  
Gabriel Holtsmark

Currently, the conventional wave loading is the only effect considered in fatigue assessment of ships. DNV has recently confirmed that fatigue damage from wave induced vibrations may be of similar magnitude as from the conventional wave loading (Moe et al. 2005). A 40% contribution to the total fatigue damage in deck amidships is documented through extensive measurements onboard an ore carrier (the reference ship) trading in the North Atlantic. The effect of strengthening the vessel, increasing the natural frequency by 10%, is ineffective to reduce the relative magnitude of the vibration damage. The wave induced vibration, often referred to as whipping and/or springing, does contribute to fatigue damage also for other ship types and trades (Moe et al. 2005). This paper considers the effect of trade. It indicates when the wave induced vibrations should be accounted for in the design phase with respect to fatigue damage. A second ore carrier (the target ship) is monitored with respect to the wave induced hull vibrations and their fatigue effect. Stress records from strain sensors located in the midship deck region are supplemented by wave radar and wind records. Based on the measurements, the vibration stress response and associated vibration induced fatigue damage are determined for varying wind- and wave forces and relative headings. While the reference ship operates in the Canada to Europe ore trade, the target ship trades between Canada and Europe, Brazil and Europe, and South Africa and Europe. A procedure is suggested by Moe et al. (2005) to estimate the long term fatigue damage for different trades by utilizing the measured data from the reference ship. The vibration and wave damage are considered separately. By comparing the measured wave environment and the DNV North Atlantic scatter diagram, the effect of routing indicated a reduction of the fatigue damage by one third. A slightly revised procedure is applied to estimate the effect of trade for the second ore carrier, comparing the long term predicted fatigue damage with the measured fatigue damage. The importance of trade is confirmed. However, the relative contribution of the vibration damage is shown to increase in less harsh environments. The target ship vibrates more than the reference ship for the same trade and Beaufort strength. The vibration damage of the target ship constitutes 56% of the total measured damage, and the high natural frequency is observed to have no significant effect.


Author(s):  
Daokun Zhang ◽  
Wenyong Tang ◽  
Shengkun Zhang

Floating production, storage, and offloading (FPSO) system has been widely used in the offshore oil and gas exploitations. Since it has long intervals of docking for thorough inspection and maintenance, and is exposed to collision risk at sea, the time-variant reliability of FPSO becomes very important as for the risks of corrosion and collision. The corrosion defect is modeled as the exponential function of time. The Idealized Structural Unit Method is also proposed to predict ultimate strength of hull girder. Still water and wave-induced bending moments are also combined into stochastic processes. Reliabilities of intact hull during the service are calculated as references to those of collided hulls with effect of corrosion defect. Collision condition is a focus in this paper, where collided hulls are modeled according to ABS instructions. According to the instructions, the section with highest bending moment, which almost locates at the mid ship, should be noticed. Therefore still water bending moments of mid section of collided hulls are achieved and divided into two groups based on collision positions. One is that the mid section is broken, which is named as “direct damage”. Another is that other else section is broken, which is named as “influence”. Result shows that “influence” condition has higher still water bending moment than “direct damage”, which is usually neglected in previous researches. Finally, reliabilities of collided hulls throughout the service life are obtained, which can become references to further inspection and maintenance plan.


2007 ◽  
Vol 129 (4) ◽  
pp. 279-289 ◽  
Author(s):  
Gaute Storhaug ◽  
Erlend Moe ◽  
Gabriel Holtsmark

Currently, the conventional wave loading is the only effect considered in fatigue assessment of ships. Det Norske Veritas (DNV) has recently confirmed that fatigue damage from wave induced vibrations may be of similar magnitude as from the conventional wave loading (Moe et al., 2005, RINA, International Conference, Design and Operation of Bulk Carriers, London, Oct. 18–19, pp. 57–85). A 40% contribution to the total fatigue damage in deck amidships is documented through extensive measurements onboard an ore carrier (the reference ship) trading in the North Atlantic. The effect of strengthening the vessel, i.e., increasing the natural frequency by 10%, is ineffective in reducing the relative magnitude of the vibration damage. The wave induced vibration, often referred to as whipping and/or springing, also contributes to fatigue damage for other ship types and trades (Moe et al.). This paper considers the effect of trade. It indicates when the wave induced vibrations should be accounted for in the design phase with respect to fatigue damage. A second ore carrier (the target ship) is monitored with respect to the wave induced hull vibrations and their fatigue effect. Stress records from strain sensors located in the midship deck region are supplemented by wave radar and wind records. Based on the measurements, the vibration stress response and associated vibration induced fatigue damage are determined for varying wind and wave forces and relative headings. While the reference ship operates in the Canada to Europe ore trade, the target ship trades between Canada and Europe, Brazil and Europe, and South Africa and Europe. A procedure is suggested by Moe et al. to estimate the long term fatigue damage for different trades by utilizing the measured data from the reference ship. The vibration and wave damage are considered separately. By comparing the measured wave environment and the DNV North Atlantic scatter diagram, the effect of routing indicated a reduction of the fatigue damage by one-third. A slightly revised procedure is applied to estimate the effect of trade for the second ore carrier, comparing the long term predicted fatigue damage with the measured fatigue damage. The importance of trade is confirmed. However, the relative contribution of the vibration damage is shown to increase in less harsh environments. The target ship vibrates more than the reference ship for the same trade and Beaufort strength. The vibration damage of the target ship constitutes 56% of the total measured damage, and the high natural frequency is observed to have no significant effect.


Author(s):  
Le Deng ◽  
Ji Guo ◽  
Chuang Fang ◽  
Lu-yao Zou

With Consideration of the uncertainties of materials yield strength, still water bending moment and wave-induced bending moment, the failure equation is established based on reliability analysis method. The reliabilities of 33 ships navigating in Yangtze River are calculated using improved FOSM method, according to which the target reliability is obtained, and the partial safety factors for hull girder ultimate strength, still water bending moment and wave-induced bending moment are given. As a result the formula for probability assessment of ultimate strength is established. Verification of sample ships shows that the formula is accurate and useful.


2017 ◽  
Vol 68 (6) ◽  
pp. 1267-1273
Author(s):  
Valeriu V. Jinescu ◽  
Angela Chelu ◽  
Gheorghe Zecheru ◽  
Alexandru Pupazescu ◽  
Teodor Sima ◽  
...  

In the paper the interaction of several loads like pressure, axial force, bending moment and torsional moment are analyzed, taking into account the deterioration due to cracks and the influence of residual stresses. A nonlinear, power law, of structure material is considered. General relationships for total participation of specific energies introduced in the structure by the loads, as well as for the critical participation have been proposed. On these bases: - a new strength calculation methods was developed; � strength of tubular cracked structures and of cracked tubular junction subjected to combined loading and strength were analyzed. Relationships for critical state have been proposed, based on dimensionless variables. These theoretical results fit with experimental date reported in literature. On the other side stress concentration coefficients were defined. Our one experiments onto a model of a pipe with two opposite nozzles have been achieved. Near one of the nozzles is a crack on the run pipe. Trough the experiments the state of stress have been obtained near the tubular junction, near the tip of the crack and far from the stress concentration points. On this basis the stress concentration coefficients were calculated.


2011 ◽  
Vol 110-116 ◽  
pp. 3422-3428 ◽  
Author(s):  
Behzad Abdi ◽  
Hamid Mozafari ◽  
Ayob Amran ◽  
Roya Kohandel

This work devoted to an ellipsoidal head of pressure vessel under internal pressure load. The analysis is aimed at finding an optimum weight of ellipsoidal head of pressure vessel due to maximum working pressure that ensures its full charge with stresses by using imperialist competitive algorithm and genetic algorithm. In head of pressure vessel the region of its joint with the cylindrical shell is loaded with shear force and bending moments. The load causes high bending stresses in the region of the joint. Therefore, imperialist competitive algorithm was used here to find the optimum shape of a head with minimum weight and maximum working pressure which the shear force and the bending moment moved toward zero. Two different size ellipsoidal head examples are selected and studied. The imperialist competitive algorithm results are compared with the genetic algorithm results.


Sign in / Sign up

Export Citation Format

Share Document