Improved Estimation of Ship Construction Completion by RFID Tags

2013 ◽  
Author(s):  
Robert Latorre ◽  
Joe Comer ◽  
Altug Basaran ◽  
Josh Trippi

This paper presents the extension of the 3-D model to the production problem of estimating construction completion. This has several benefits: 1 Timely billing for work completed. 2 Daily updates on construction completion/progress. 3 Improved material and manpower utilization from an accurate tracking of production schedule. Connecting the digital 3-D model to the as build structure requires introducing bar code labels and Radio Frequency Identification Device (RFID) tags and readers. The paper discusses many aspects of RFID tag selection and applications. The paper closes with a discussion of how the bar codes and RFID tags can be used to improve the shipbuilding progress payment. By this improvement, the modest cost of the tags and readers can be easily recovered.

Author(s):  
Madlen Boslau

The term RFID refers to radio frequency identification and describes transponders or tags that are attached to animate or inanimate objects and are automatically read by a network infrastructure or networked reading devices. Current solutions such as optical character recognition (OCR), bar codes, or smart card systems require manual data entry, scanning, or readout along the supply chain. These procedures are costly, timeconsuming, and inaccurate. RFID systems are seen as a potential solution to these constraints, by allowing non-line-of-sight reception of the coded data. Identification codes are stored on a tag that consists of a microchip and an attached antenna. Once the tag is within the reception area of a reader, the information is transmitted. A connected database is then able to decode the identification code and identify the object. Such network infrastructures should be able to capture, store, and deliver large amounts of data robustly and efficiently (Scharfeld, 2001). The applications of RFID in use today can be sorted into two groups of products: • The first group of products uses the RFID technology as a central feature. Examples are security and access control, vehicle immobilization systems, and highway toll passes (Inaba & Schuster, 2005). Future applications include rechargeable public transport tickets, implants holding critical medical data, or dog tags (Böhmer, Brück, & Rees, 2005). • The second group of products consists of those goods merely tagged with an RFID label instead of a bar code. Here, the tag simply substitutes the bar code as a carrier of product information for identification purposes. This seems sensible, as RFID tags display a number of characteristics that allow for faster, easier, more reliable, and superior identification. Once consumers are able to buy RFID tagged products, their attitude toward such tags is of central importance. Consumer acceptance of RFID tags may have severe consequences for all companies tagging their products with RFID.


2011 ◽  
Vol 367 ◽  
pp. 83-87
Author(s):  
K. Karthikeyan ◽  
Gaurav Bajpai

Radio Frequency Identification (RFID) is an automatic identification system. The data storage and retrieval on special devices are carried by RFID tags or transponders. RFID tag applications include enterprise supply chain management to improve the efficiency of inventory tracking and management. These replace bar codes and other low cost remote sensors earlier in use.


2008 ◽  
Vol 07 (01) ◽  
pp. 9-14 ◽  
Author(s):  
Selwyn Piramuthu

Radio Frequency Identification (RFID) is promising, as a technique, to enable tracking of essential information about objects as they pass through supply chains. Information thus tracked can be utilised to efficiently operate the supply chain. Effective management of the supply chain translates to huge competitive advantage for the firms involved. Among several issues that impede seamless integration of RFID tags in a supply chain, one of the problems encountered while reading RFID tags is that of collision, which occurs when multiple tags transmit data to the same receiver slot. Data loss due to collision necessitates re-transmission of lost data. We consider this problem when Framed Slotted ALOHA protocol is used. Using machine learning, we adaptively configure the number of slots per frame to reduce the number of collisions while improving throughput.


Materials ◽  
2019 ◽  
Vol 12 (18) ◽  
pp. 3036 ◽  
Author(s):  
Tao Zhong ◽  
Ning Jin ◽  
Wei Yuan ◽  
Chunshan Zhou ◽  
Weibing Gu ◽  
...  

A printable elastic silver ink has been developed, which was made of silver flakes, dispersant, and a fluorine rubber and could be sintered at a low temperature. The printed elastic conductors showed low resistivity at 21 μΩ·cm, which is about 13.2 times of bulk silver (1.59 μΩ·cm). Their mechanical properties were investigated by bending, stretching, and cyclic endurance tests. It was found that upon stretching the resistance of printed conductors increased due to deformation and small cracks appeared in the conductor, but was almost reversible when the strain was removed, and the recovery of conductivity was found to be time dependent. Radio-frequency identification (RFID) tags were fabricated by screen printing the stretchable silver ink on a stretchable fabric (lycra). High performance of tag was maintained even with 1000 cycles of stretching. As a practical example of wearable electronics, an RFID tag was printed directly onto a T-shirt, which demonstrated its normal working order in a wearing state.


2019 ◽  
Vol 9 (5) ◽  
pp. 4679-4684
Author(s):  
M. Added ◽  
K. Rabaani ◽  
S. Chabaan ◽  
N. Boulejfen

A compact chipless radio frequency identification (RFID) tag-based on slow-wave technology is introduced in this paper. The tag consists of a resonant circuit based on open stub resonators periodically loaded by shunt stubs allowing a coding capacity of 9 bits and operating in a frequency range from 2 to 4GHz. The receiving and transmitting antennas of the tag are particularly designed to minimize the tag size as much as possible. The proposed tag presents a robust bit pattern with a compact and fully printable structure using FR4 substrate for a low-cost tag.


Textiles ◽  
2021 ◽  
Vol 1 (3) ◽  
pp. 547-557
Author(s):  
Sofia Benouakta ◽  
Florin Doru Hutu ◽  
Yvan Duroc

In the context of wearable technology, several techniques have been used for the fabrication of radio frequency identification (RFID) tags such as 3D printing, inkjet printing, and even embroidery. In contrast to these methods where the tag is attached to the object by using sewing or simple sticking, the E-Thread® technology is a novel assembling method allowing for the integration of the RFID tag into a textile yarn and thus makes it embeddable into the object at the fabrication stage. The current E-Thread® yarn uses a RFID tag in which the antenna is a straight half-wave dipole that makes the solution vulnerable to mechanical strains (i.e., elongation). In this paper, we propose an alternative to the current RFID yarn solution with the use of an antenna having a helical geometry that answers to the mechanical issues and keeps quite similar electrical and radiative properties with respect to the present solution. The RFID helical tag was designed and simulated taking into consideration the constraints of the manufacturing process. The helical RFID tag was then fabricated using the E-Thread® technology and experimental characterization showed that the obtained structure exhibited good performance with 10.6 m of read range in the ultra high frequency (UHF) RFID band and 10% of tolerance in terms of elongation.


2009 ◽  
Vol 20 (04) ◽  
pp. 619-632
Author(s):  
JAHNG HYON PARK ◽  
YONG-KWAN JI

This paper presents methods of localization of mobile systems using recent Radio Frequency Identification (RFID) technology. We consider an indoor environment where RFID tags are implanted along the wall or in objects in the room. If the absolute position and orientation of a tag are read by an RF reader, a mobile system can estimate its location using the information saved in the tags. A reader-tag model is obtained through experiments in order to derive relative positions and orientations between an antenna and an RFID tag. To estimate the location, we propose two estimation methods. One uses a single RFID tag and the other uses multi-RFID tags. Experimental results show that the proposed methods can provide good performance for mobile system localization in an indoor environment.


2011 ◽  
pp. 659-666 ◽  
Author(s):  
Claudia Loebecke

The use of RFID (radio-frequency identification) in the retail supply chain and at the point of sale (POS) holds much promise to revolutionize the process by which products pass from manufacturer to retailer to consumer. The basic idea of RFID is a tiny computer chip placed on pallets, cases, or items. The data on the chip can be read using a radio beam. RFID is a newer technology than bar codes, which are read using a laser beam. RFID is also more effective than bar codes at tracking moving objects in environments where bar code labels would be suboptimal or could not be used as no direct line of sight is available, or where information needs to be automatically updated. RFID is based on wireless (radio) systems, which allows for noncontact reading of data about products, places, times, or transactions, thereby giving retailers and manufacturers alike timely and accurate data about the flow of products through their factories, warehouses, and stores.


Author(s):  
Claudia Loebecke

The use of RFID (radio-frequency identification) in the retail supply chain and at the point of sale (POS) holds much promise to revolutionize the process by which products pass from manufacturer to retailer to consumer. The basic idea of RFID is a tiny computer chip placed on pallets, cases, or items. The data on the chip can be read using a radio beam. RFID is a newer technology than bar codes, which are read using a laser beam. RFID is also more effective than bar codes at tracking moving objects in environments where bar code labels would be suboptimal or could not be used as no direct line of sight is available, or where information needs to be automatically updated. RFID is based on wireless (radio) systems, which allows for noncontact reading of data about products, places, times, or transactions, thereby giving retailers and manufacturers alike timely and accurate data about the flow of products through their factories, warehouses, and stores.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Erja Sipilä ◽  
Johanna Virkki ◽  
Jianhua Wang ◽  
Lauri Sydänheimo ◽  
Leena Ukkonen

Additive deposition of inks with metallic inclusions provides compelling means to embed electronics into versatile structures. The need to integrate electronics into environmentally friendly components and structures increases dramatically together with the increasing popularity of the Internet of Things. We demonstrate a novel brush-painting method for depositing copper oxide and silver inks directly on wood and cardboard substrates and discuss the optimization of the photonic sintering process parameters for both materials. The optimized parameters were utilized to manufacture passive ultra high frequency (UHF) radio frequency identification (RFID) tag antennas. The results from wireless testing show that the RFID tags based on the copper oxide and silver ink antennas on wood substrate are readable from ranges of 8.5 and 11 meters, respectively, and on cardboard substrate from read ranges of 8.5 and 12 meters, respectively. These results are well sufficient for many future wireless applications requiring remote identification with RFID.


Sign in / Sign up

Export Citation Format

Share Document