scholarly journals Shared-Energy Prediction Model for Ship-Ice Interactions

2021 ◽  
Author(s):  
Amy Price ◽  
Bruce W. T. Quinton ◽  
Brian Veitch

Low- and non-ice-class ship-ice interactions are modelled with a shared-energy approach, which typically models the internal mechanics with nonlinear finite element methods. For applications like the preliminary design phase and quick operational assessments of the ship’s structural capabilities, a finite element shared-energy approach can be time consuming and information intensive, therefore, an analytical share-energy algorithm is proposed. The proposed algorithm applies the upper bound energy methodology by equating the external collision energy, determined with the Popov collision model (Popov, et al., 1967), to the sum of the internal ice and structural response energies. The distribution of the internal energy, between the ice and the structure, is determined by iterating through possible shared contact forces until the sum of the internal response energies equals the external energy introduced into the system. The ice-crushing energy is modelled with Daley’s (1999) energy based ice collision force models, and the internal structural strain energy is modelled through a combination of classical beam theory and design of experiments methodology. The proposed model is benchmarked against a finite element ice wedge-ship grillage structure interaction.

Author(s):  
Martin Pletz ◽  
Werner Daves ◽  
Heinz Ossberger

A finite element model for the process of a wheel passing a crossing is presented. In the dynamic model, one wheel, the wing rails and the crossing nose (frog) are modelled. The bogie, the complete wheel set and the support of the crossing are represented as a system consisting of masses, springs, dampers and friction-generating elements. The rolling/sliding behaviour between the wheel and crossing is studied using the proposed model. Due to the conical shape of the wheel tread and multiple contacts between the wheel and the crossing parts, sliding occurs during the transition of the wheel from the wing rail to the crossing nose or vice versa. At the same time, an impact occurs that produces high contact forces. The parameters of the model are the train speed and passing direction, the wheel and the crossing geometry, the axle load and the support of the crossing. In this paper, the crossover process is studied for high axle loads and compared with results of simulations using a normal axle load. Further parameters are three train velocities, both directions of passing and different crossing materials. The loading of the crossing nose is calculated for all cases (axle load, train speed and direction) and materials.


2019 ◽  
Author(s):  
Miguel Abambres ◽  
Dinar Camotim ◽  
Nuno Silvestre

Structural systems made of high-strength and/or high-ductility metals are usually also rather slender, which means that their structural behavior and ultimate strength are often governed by a combination of plasticity and instability effects. Currently, the rigorous numerical analysis of such systems can only be achieved by resorting to complex and computationally costly shell finite element simulations. This work aims at supplying to designers/researchers an efficient and structurally clarifying alternative to assess the geometrically and/or materially non-linear behavior (up to and beyond the ultimate load) of prismatic thin-walled members, such as those built from cold-formed steel. The proposed approach is based on Generalized Beam Theory (GBT) and is suitable for members exhibiting arbitrary deformation patterns (e.g., global, local, distortional, shear) and made of non-linear isotropic materials (e.g., carbon/stainless steel grades or aluminum alloys). The paper begins by providing a critical overview of the physically and geometrically non-linear GBT formulation recently developed and validated by the authors (Abambres et al. 2012a), which is followed by the presentation and thorough discussion of several illustrative numerical results concerning the structural responses of 4 members (beams and columns) made of distinct (linear, bi-linear or highly non-linear) materials. The GBT results consist of equilibrium paths, modal participation diagrams and amplitude functions, stress contours, displacement profiles and collapse mechanisms some of them are compared with values obtained from ABAQUS shell finite element analyses. It is shown that the GBT modal nature makes it possible (i) to acquire in-depth knowledge on the member behavioral mechanics at any given equilibrium state (elastic or elastic-plastic), as well as (ii) to provide evidence of the GBT computational efficiency, which is achieved by excluding from the analyses all the deformation modes that do not play any role in a particular member structural response.


2019 ◽  
Author(s):  
Miguel Abambres ◽  
Dinar Camotim ◽  
Miguel Abambres

A 2nd order inelastic Generalised Beam Theory (GBT) formulation based on the J2 flow theory is proposed, being a promising alternative to the shell finite element method. Its application is illustrated for an I-section beam and a lipped-C column. GBT results were validated against ABAQUS, namely concerning equilibrium paths, deformed configurations, and displacement profiles. It was concluded that the GBT modal nature allows (i) precise results with only 22% of the number of dof required in ABAQUS, as well as (ii) the understanding (by means of modal participation diagrams) of the behavioral mechanics in any elastoplastic stage of member deformation .


2018 ◽  
Author(s):  
Miguel Abambres

Original Generalized Beam Theory (GBT) formulations for elastoplastic first and second order (postbuckling) analyses of thin-walled members are proposed, based on the J2 theory with associated flow rule, and valid for (i) arbitrary residual stress and geometric imperfection distributions, (ii) non-linear isotropic materials (e.g., carbon/stainless steel), and (iii) arbitrary deformation patterns (e.g., global, local, distortional, shear). The cross-section analysis is based on the formulation by Silva (2013), but adopts five types of nodal degrees of freedom (d.o.f.) – one of them (warping rotation) is an innovation of present work and allows the use of cubic polynomials (instead of linear functions) to approximate the warping profiles in each sub-plate. The formulations are validated by presenting various illustrative examples involving beams and columns characterized by several cross-section types (open, closed, (un) branched), materials (bi-linear or non-linear – e.g., stainless steel) and boundary conditions. The GBT results (equilibrium paths, stress/displacement distributions and collapse mechanisms) are validated by comparison with those obtained from shell finite element analyses. It is observed that the results are globally very similar with only 9% and 21% (1st and 2nd order) of the d.o.f. numbers required by the shell finite element models. Moreover, the GBT unique modal nature is highlighted by means of modal participation diagrams and amplitude functions, as well as analyses based on different deformation mode sets, providing an in-depth insight on the member behavioural mechanics in both elastic and inelastic regimes.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Arnab Bose ◽  
Prabhakar Sathujoda ◽  
Giacomo Canale

Abstract The present work aims to analyze the natural and whirl frequencies of a slant-cracked functionally graded rotor-bearing system using finite element analysis for the flexural vibrations. The functionally graded shaft is modelled using two nodded beam elements formulated using the Timoshenko beam theory. The flexibility matrix of a slant-cracked functionally graded shaft element has been derived using fracture mechanics concepts, which is further used to develop the stiffness matrix of a cracked element. Material properties are temperature and position-dependent and graded in a radial direction following power-law gradation. A Python code has been developed to carry out the complete finite element analysis to determine the Eigenvalues and Eigenvectors of a slant-cracked rotor subjected to different thermal gradients. The analysis investigates and further reveals significant effect of the power-law index and thermal gradients on the local flexibility coefficients of slant-cracked element and whirl natural frequencies of the cracked functionally graded rotor system.


2014 ◽  
Vol 672-674 ◽  
pp. 1550-1553
Author(s):  
Zhen Guo Shang ◽  
Zhong Chao Ma ◽  
Zhen Sheng Sun

A procedure for obtaining the load distribution in a four point contact wind turbine yaw bearing considering the effect of the structure’s elasticity is presented. The inhomogeneous stiffness of the supporting structures creates a variation in the results obtained with a rigid model. A finite element model substituting the rolling elements with nonlinear compression springs has been built to evaluate the effect of the supporting structure elasticity on the contact forces between the rolling elements and the raceways.


2012 ◽  
Vol 204-208 ◽  
pp. 4455-4459 ◽  
Author(s):  
Liu Hong Chang ◽  
Chang Bo Jiang ◽  
Man Jun Liao ◽  
Xiong Xiao

The explicit dynamic finite element theory is applied on the collision of ships with buoys for computer simulation. Using ANSYS/LS-DYNA finite element analysis software, the numerical simulation of the collision between the ton ship and the buoy with different structures and impact points. The collision force, deformation, displacement parameters and the weak impact points of a buoy are obtained. Based on the numerical simulation results, analysis of buoys and structural collision damages in anti-collision features are discussed, and several theoretical sugestions in anti-collision for the design of buoy are provided.


Sign in / Sign up

Export Citation Format

Share Document