Non-destructive inspection and analysis of hardened steel plates by ultrasonic test with backscatter technique

2021 ◽  
Vol 13 (1) ◽  
pp. 49-54
Author(s):  
Amin Heydarian Hamzehkanloo
2018 ◽  
Vol 10 (4) ◽  
pp. 421-438 ◽  
Author(s):  
Mark G Stewart ◽  
Brianna Dorrough ◽  
Michael D Netherton

The penetration of projectiles into semi-infinite targets helps in the understanding and modelling of terminal ballistics. The article describes field test results of 5.56×45 mm F1 Ball and 7.62×51 mm M80 Ball ammunition. The targets were 25-mm-thick mild and high strength steel plates of Grade 250 MPa and 350 MPa, respectively. The tests recorded penetration depth, muzzle and impact velocities, and bullet mass. Despite its smaller calibre, the 5.56 mm × 45 mm F1 Ball ammunition recorded deeper penetrations than the larger calibre 7.62 mm × 51 mm M80 Ball ammunition. This is due to the 5.56 mm ammunition comprising a hardened steel penetrator and lead core, whereas the 7.62 mm ammunition comprised only a lead core. Multiple shots were fired for each type of munition. The coefficient of variation of steel penetration is approximately 0.10 and 0.03 for 5.56 mm and 7.62 mm rounds, respectively. The article also presents predictive models of steel penetration depth and compares these to the field test results.


Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2167 ◽  
Author(s):  
Erwin Wojtczak ◽  
Magdalena Rucka ◽  
Magdalena Knak

Strengthening of engineering structures is an important issue, especially for elements subjected to variable loads. In the case of concrete beams or slabs, one of the most popular approaches assumes mounting an external reinforcement in the form of steel or composite elements by structural adhesives. A significant disadvantage of adhesive joints is the lack of access to the adhesive film for visual condition assessment, thus, there is a need for non-destructive diagnostics of these kinds of connections. The aim of this paper was the identification and visualization of defects in adhesive joints between concrete beams and steel plates using the guided wave propagation technique. The initial theoretical and numerical analyses were performed. The experimental wave field was excited and measured by the scanning laser Doppler vibrometry. The collected signals were processed by the weighted root mean square (WRMS) calculation. As a result, 2-D damage maps were obtained. The numerical simulations were performed to corroborate the experimental results. The results showed that the guided waves could be successfully applied in non-destructive diagnostics of adhesive joints between concrete and steel elements. However, the quality of damage visualizations strongly depended on the location of excitation.


2019 ◽  
Vol 9 (14) ◽  
pp. 2810 ◽  
Author(s):  
Azadeh Noori Hoshyar ◽  
Maria Rashidi ◽  
Ranjith Liyanapathirana ◽  
Bijan Samali

Monitoring of structures to identify types of damages that occur under loading is essential in practical applications of civil infrastructure. In this paper, we detect and visualize damage based on several non-destructive testing (NDT) methods. A machine learning (ML) approach based on the Support Vector Machine (SVM) method is developed to prevent misdirection of the event interpretation of what is happening in the material. The objective is to identify cracks in the early stages, to reduce the risk of failure in structures. Theoretical and experimental analyses are derived by computing the performance indicators on the smart aggregate (SA)-based sensor data for concrete and reinforced-concrete (RC) beams. Validity assessment of the proposed indices was addressed through a comparative analysis with traditional SVM. The developed ML algorithms are shown to recognize cracks with a higher accuracy than the traditional SVM. Additionally, we propose different algorithms for microwave- or millimeter-wave imaging of steel plates, composite materials, and metal plates, to identify and visualize cracks. The proposed algorithm for steel plates is based on the gradient magnitude in four directions of an image, and is followed by the edge detection technique. Three algorithms were proposed for each of composite materials and metal plates, and are based on 2D fast Fourier transform (FFT) and hybrid fuzzy c-mean techniques, respectively. The proposed algorithms were able to recognize and visualize the cracking incurred in the structure more efficiently than the traditional techniques. The reported results are expected to be beneficial for NDT-based applications, particularly in civil engineering.


2018 ◽  
Vol 10 (2) ◽  
pp. 174-197 ◽  
Author(s):  
Senthil Kasilingam ◽  
Mohd Ashraf Iqbal ◽  
Rupali Senthil

This study is based on the finite element investigation of the response of mild steel and Armox 500 T steel targets subjected to macro- and micro-size impactor. The simulations were carried out on target against penetrator with varying masses, sizes, shapes and different nature (rigid and deformable projectiles) using ABAQUS/Explicit. The material parameters of Johnson–Cook elasto-viscoplastic model were employed for predicting the behaviour of the target. The impact resistance of mild steel and Armox 500 T steel plates has been studied against flat nose having masses of 4, 8, 13.5, 27, 32 and 64 kg. The influence of temperature has also been studied numerically for particular penetrator. To study the influence of nature of projectile, the simulations were performed on mild steel and Armox 500 T steel targets against deformable 2024 aluminium flat, hardened steel flat and hardened steel conical impactors at 950 and 150 m/s incidence velocities. Also, the simulations were carried out on given target against 7.62 and 12.7 mm armour piercing incendiary ogival nose projectiles. The performance of (4.7 + 4.7 mm) 9.4-mm-thick equivalent mild steel and Armox 500 T steel plate in combination has also been studied against 7.62 armour piercing incendiary ogival nose projectiles at 950 and 150 m/s incidence velocities. The study thus presents a detailed investigation in terms of penetration, perforation and failure mechanism of mild steel and Armox 500 T steel target and leads to some important conclusions pertaining to the force and resistance offered by the target.


2014 ◽  
Vol 92 ◽  
pp. 194-202 ◽  
Author(s):  
Semra Kurama ◽  
Elif Eren Gültekin

Non-destructive testing techniques are widely used for testing ceramic materials. In our studies, two different types of ultrasonic test methods (A-scan and C-Scan) were investigated as non-destructive testing methods for characterization of porcelain tiles. Tiles were sintered in different temperatures to change their porosity and density properties. By changing of ultrasonic time and velocity related with samples’ some physical properties (such as bulk density, apparent density, apparent porosity (%), water absorption (%)) inspected via contact A-scan ultrasonic test method. The results show that without necessity of traditional test methods, some physical properties of ceramics can be determined by using obtained ultrasonic velocity-bulk density, apparent density, apparent porosity (%) and water absorption (%) calibration plots. Additionally, various defects were inspected in samples by using water immersion ultrasonic C-scan method. These results supported this study to obtain the information about defects’ size and place in the ceramic tiles. To support this non-destructive method results scanning electron microscope (SEM) characterization was done and images give the information about the place of the defect.


Author(s):  
Pradeep L. Menezes ◽  
Kishore ◽  
Satish V. Kailas ◽  
Michael R. Lovell

Surface texture influences friction during sliding. In the present investigation, experiments were conducted using an inclined pin-on-plate apparatus to study the tribological response of metals and polymers during sliding against various surface textures. In the experiments, metals (Pb and Sn) and polymers (PP and PVC) were used for the pin and hardened steel was used for the plate. Experiments were conducted under both dry and lubricated conditions in an ambient environment. Two surface parameters of the steel plates — roughness and texture — were varied in the experiments. Using scanning electron microscope images, the surfaces of both the plate and pin materials were examined to determine the transfer layer formation on the plate and the wear of the pins. Based on the experimental results, it was observed that the transfer layer formation and the coefficient of friction were controlled by the surface texture of the plates. Moreover, both polymers and metals exhibited similar frictional responses, but the metals had a significantly larger variation in friction with surface texture.


Sign in / Sign up

Export Citation Format

Share Document