scholarly journals Type 1 Diabetes Mellitus Donor Mesenchymal Stromal Cells Exhibit Comparable Potency to Healthy Controls In Vitro

2016 ◽  
Vol 5 (11) ◽  
pp. 1485-1495 ◽  
Author(s):  
Lindsay C. Davies ◽  
Jessica J. Alm ◽  
Nina Heldring ◽  
Guido Moll ◽  
Caroline Gavin ◽  
...  
2019 ◽  
Vol 8 (2) ◽  
pp. 249 ◽  
Author(s):  
Hiroyuki Takahashi ◽  
Naoaki Sakata ◽  
Gumpei Yoshimatsu ◽  
Suguru Hasegawa ◽  
Shohta Kodama

Type 1 diabetes mellitus (T1DM) is caused by the autoimmune targeting of pancreatic β-cells, and, in the advanced stage, severe hypoinsulinemia due to islet destruction. In patients with T1DM, continuous exogenous insulin therapy cannot be avoided. However, an insufficient dose of insulin easily induces extreme hyperglycemia or diabetic ketoacidosis, and intensive insulin therapy may cause hypoglycemic symptoms including hypoglycemic shock. While these insulin therapies are efficacious in most patients, some additional therapies are warranted to support the control of blood glucose levels and reduce the risk of hypoglycemia in patients who respond poorly despite receiving appropriate treatment. There has been a recent gain in the popularity of cellular therapies using mesenchymal stromal cells (MSCs) in various clinical fields, owing to their multipotentiality, capacity for self-renewal, and regenerative and immunomodulatory potential. In particular, adipose tissue-derived MSCs (ADMSCs) have become a focus in the clinical setting due to the abundance and easy isolation of these cells. In this review, we outline the possible therapeutic benefits of ADMSC for the treatment of T1DM.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Juliana Navarro Ueda Yaochite ◽  
Kalil Willian Alves de Lima ◽  
Carolina Caliari-Oliveira ◽  
Patricia Vianna Bonini Palma ◽  
Carlos Eduardo Barra Couri ◽  
...  

2018 ◽  
Vol 58 (4) ◽  
pp. 583-591 ◽  
Author(s):  
Maria Augusta Sabadine ◽  
Thiago Luiz Russo ◽  
Genoveva Flores Luna ◽  
Angela Merice Oliveira Leal

2005 ◽  
Vol 153 (6) ◽  
pp. 895-899 ◽  
Author(s):  
Heinrich Kahles ◽  
Elizabeth Ramos-Lopez ◽  
Britta Lange ◽  
Oliver Zwermann ◽  
Martin Reincke ◽  
...  

Background: Endocrine autoimmune disorders share genetic susceptibility loci, causing a disordered T-cell activation and homeostasis (HLA class II genes, CTLA-4). Recent studies showed a genetic variation within the PTPN22 gene to be an additional risk factor. Materials and Methods: Patients with type 1 diabetes (n = 220), Hashimoto’s thyroiditis (n = 94), Addison’s disease (n = 121) and healthy controls (n = 239) were genotyped for the gene polymorphism PTPN22 1858 C/T. Results: Our study confirms a significant association between allelic variation of the PTPN22 1858 C/T polymorphism and type 1 diabetes mellitus (T1D). 1858T was observed more frequently in T1D patients (19.3% vs 11.3%, P = 0.0009; odds ratio for allele T = 1.88, 95% confidence interval [1.3–2.7]). Furthermore, we found a strong association in female patients with T1D (P = 0.0003), whereas there was no significant difference between male patients with type 1 diabetes and male controls. No significant difference was observed between the distribution of PTPN22 C/T in patients with Hashimoto’s thyroiditis or Addison’s disease and healthy controls. Conclusion: The PTPN22 polymorphism 1858 C/T may be involved in the pathogenesis of type 1 diabetes mellitus by a sex-specific mechanism that contributes to susceptibility in females.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Phillip Trefz ◽  
Juliane Obermeier ◽  
Ruth Lehbrink ◽  
Jochen K. Schubert ◽  
Wolfram Miekisch ◽  
...  

Abstract Monitoring metabolic adaptation to type 1 diabetes mellitus in children is challenging. Analysis of volatile organic compounds (VOCs) in exhaled breath is non-invasive and appears as a promising tool. However, data on breath VOC profiles in pediatric patients are limited. We conducted a cross-sectional study and applied quantitative analysis of exhaled VOCs in children suffering from type 1 diabetes mellitus (T1DM) (n = 53) and healthy controls (n = 60). Both groups were matched for sex and age. For breath gas analysis, a very sensitive direct mass spectrometric technique (PTR-TOF) was applied. The duration of disease, the mode of insulin application (continuous subcutaneous insulin infusion vs. multiple daily insulin injection) and long-term metabolic control were considered as classifiers in patients. The concentration of exhaled VOCs differed between T1DM patients and healthy children. In particular, T1DM patients exhaled significantly higher amounts of ethanol, isopropanol, dimethylsulfid, isoprene and pentanal compared to healthy controls (171, 1223, 19.6, 112 and 13.5 ppbV vs. 82.4, 784, 11.3, 49.6, and 5.30 ppbV). The most remarkable differences in concentrations were found in patients with poor metabolic control, i.e. those with a mean HbA1c above 8%. In conclusion, non-invasive breath testing may support the discovery of basic metabolic mechanisms and adaptation early in the progress of T1DM.


Sign in / Sign up

Export Citation Format

Share Document