scholarly journals Awareness among students on ill effects of carbonated drinks on enamel

2020 ◽  
Vol 16 (12) ◽  
pp. 1037-1044
Author(s):  
Madhumithaa Sivarajan

It is of interest to document data on the AWARENESS AMONG STUDENTS (18 to 25 years) ON ILL EFFECTS OF CARBONATED DRINK ON ENAMEL using an online survey questionnaire. Data shows that about 67.2% students consume carbonated drinks every day and only 41.8% of the students experienced ill effects. Moreover, 44.8% of students did not experience any discomfort after consumption of soft drinks. The prevalence of tooth erosion in students who consume soft drinks every day is high and the frequency of consumption of potentially erosive soft drinks with low pH values was the only possible risk factor for dental erosion. Most of the students did prefer fruit juices to carbonated drinks due to the constant exposure for a balanced health.

2017 ◽  
Vol 2 (s1) ◽  
pp. 17-20
Author(s):  
Krisztina Mártha ◽  
Alexandru Ogodescu ◽  
Daniela Eșian ◽  
Cristina Bica ◽  
Eugen Bud

AbstractGastroesophageal reflux disease (GERD) is a very common digestive disorder, which occurs when the acidic contents of the stomach returns into the esophagus to some extent, reaching the mouth, thereby increasing the frequency of dental erosion and caries. Since saliva plays a huge role in oral homeostasis, it is important to examine the role of this parameter in the appearance of the above mentioned oral lesions. The aim of our study was evaluate the oral condition of children suffering from reflux disease and to assess the relationship between salivary pH and the incidence of dental erosion and caries. In this prospective study we examined 25 children diagnosed with GERD, referred for hospitalization. Bedside intra-oral examination (DMFT index, gingival index) and strip method pH value determination was performed. We observed that patients with low pH values had increased caries frequency, and dental erosion was also noticeable. Statistical significance was determined comparing the DMFT index in groups with different pH values. We concluded that the high number of erosions is closely related to gastroesophageal reflux disease, as a consequence of the low pH value, which represents the main cause of oral manifestations in GERD.


2011 ◽  
Vol 77 (10) ◽  
pp. 3406-3412 ◽  
Author(s):  
Gino Vrancken ◽  
Luc De Vuyst ◽  
Tom Rimaux ◽  
Joke Allemeersch ◽  
Stefan Weckx

ABSTRACTSourdough is a very competitive and challenging environment for microorganisms. Usually, a stable microbiota composed of lactic acid bacteria (LAB) and yeasts dominates this ecosystem. Although sourdough is rich in carbohydrates, thus providing an ideal environment for microorganisms to grow, its low pH presents a particular challenge. The nature of the adaptation to this low pH was investigated forLactobacillus plantarumIMDO 130201, an isolate from a laboratory wheat sourdough fermentation. Batch fermentations were carried out in wheat sourdough simulation medium, and total RNA was isolated from mid-exponential-growth-phase cultures, followed by differential gene expression analysis using a LAB functional gene microarray. At low pH values, an increased expression of genes involved in peptide and amino acid metabolism was found as well as that of genes involved in plantaricin production and lipoteichoic acid biosynthesis. The results highlight cellular mechanisms that allowL. plantarumto function at a low environmental pH.


1970 ◽  
Vol 73 (5) ◽  
pp. 874-878 ◽  
Author(s):  
Takao YOTSUYANAGI ◽  
Katsumi GOTO ◽  
Masaichi NAGAYAMA
Keyword(s):  
Low Ph ◽  

2018 ◽  
Vol 93 (4) ◽  
Author(s):  
Ezequiel Dantas ◽  
Fernando Erra Díaz ◽  
Pehuén Pereyra Gerber ◽  
Augusto Varese ◽  
Diana Alicia Jerusalinsky ◽  
...  

ABSTRACTHistidine-rich glycoprotein (HRG) is an abundant plasma protein with a multidomain structure, allowing its interaction with many ligands, including phospholipids, plasminogen, fibrinogen, IgG antibodies, and heparan sulfate. HRG has been shown to regulate different biological responses, such as angiogenesis, coagulation, and fibrinolysis. Here, we found that HRG almost completely abrogated the infection of Ghost cells, Jurkat cells, CD4+T cells, and macrophages by HIV-1 at a low pH (range, 6.5 to 5.5) but not at a neutral pH. HRG was shown to interact with the heparan sulfate expressed by target cells, inhibiting an early postbinding step associated with HIV-1 infection. More importantly, by acting on the viral particle itself, HRG induced a deleterious effect, which reduces viral infectivity. Because cervicovaginal secretions in healthy women show low pH values, even after semen deposition, our observations suggest that HRG might represent a constitutive defense mechanism in the vaginal mucosa. Of note, low pH also enabled HRG to inhibit the infection of HEp-2 cells and Vero cells by respiratory syncytial virus (RSV) and herpes simplex virus 2 (HSV-2), respectively, suggesting that HRG might display broad antiviral activity under acidic conditions.IMPORTANCEVaginal intercourse represents a high-risk route for HIV-1 transmission. The efficiency of male-to-female HIV-1 transmission has been estimated to be 1 in every 1,000 episodes of sexual intercourse, reflecting the high degree of protection conferred by the genital mucosa. However, the contribution of different host factors to the protection against HIV-1 at mucosal surfaces remains poorly defined. Here, we report for the first time that acidic values of pH enable the plasma protein histidine-rich glycoprotein (HRG) to strongly inhibit HIV-1 infection. Because cervicovaginal secretions usually show low pH values, our observations suggest that HRG might represent a constitutive antiviral mechanism in the vaginal mucosa. Interestingly, infection by other viruses, such as respiratory syncytial virus and herpes simplex virus 2, was also markedly inhibited by HRG at low pH values, suggesting that extracellular acidosis enables HRG to display broad antiviral activity.


2018 ◽  
Vol 21 (0) ◽  
Author(s):  
Melicia Cintia Galdeano ◽  
Allan Eduardo Wilhelm ◽  
Isabella Borges Goulart ◽  
Renata Valeriano Tonon ◽  
Otniel Freitas-Silva ◽  
...  

Abstract Ozone has been used for many years to disinfect water due to its oxidizing potential. Since it decomposes quickly into molecular oxygen, leaving no residue, it has important advantages for use. The decomposition of ozone is affected by the temperature and pH of the medium, low pH values and temperatures increasing its half-life, which can result in more efficient disinfection. With the objective of increasing the effectiveness of ozonation, this study investigated the effect of temperature (8 ºC and 25 °C) and pH (3.0 and 6.0) of the water on the saturation time and gas concentration, employing two initial gas concentrations (13.3 and 22.3 mg L-1). The concentration of ozone saturation increased as the temperature and pH of the medium decreased, as also with the higher initial gas concentration ( C0). The highest saturation concentrations were obtained at pH 3.0 and 8 °C (4.50 and 8.03 mg L-1 with C0 of 13.3 and 22.3 mg L-1, respectively). This higher ozone content could result in greater decontamination efficiency of the food products washed with this water.


SPE Journal ◽  
2017 ◽  
Vol 22 (05) ◽  
pp. 1467-1477 ◽  
Author(s):  
Mobin Salasi ◽  
Thunyaluk Pojtanabuntoeng ◽  
Sindee Wong ◽  
Marc Lehmann

Summary This study investigates the oxygen-scavenging behavior of bisulfite ions in monoethylene glycol (MEG)/water mixtures at concentrations commonly found in gas-transportation pipelines. Temperatures and pH values were varied. The influence of transition-metal (TM) ions to catalyze the bisulfite oxygen scavenging was studied. Experimental results indicate that MEG significantly inhibits bisulfite oxygen removal, which is hindered at low pH values and, to some extent, temperature. TMs can accelerate the oxygen-scavenging reaction in pH-unadjusted solutions, although the rate was still lower than that of the pH-adjusted solutions. The possible mechanism for such behavior and industrial implications are discussed.


Sign in / Sign up

Export Citation Format

Share Document