Process on Customized Home Modification for Elder Mother-Elder Son Households with Lower Extremity Dysfunction

2019 ◽  
Vol 30 (5) ◽  
pp. 53-66
Author(s):  
Yeun-Sook Lee ◽  
Chang-Houn Ahn ◽  
Seung-Yeon Cho ◽  
Min-Ah Park
2004 ◽  
Vol 96 (1) ◽  
pp. 149-160 ◽  
Author(s):  
Chris A. McGibbon ◽  
David E. Krebs

We identified biomechanical variables indicative of lower extremity dysfunction, distinct from age-related gait adaptations, and examined interrelationships among these variables to better understand the neuromuscular adaptations in gait. Sagittal plane ankle, knee, and hip peak angles, moments, and powers and spatiotemporal parameters were acquired during preferred-speed gait in 120 subjects: 45 healthy young, 37 healthy elders, and 38 elders with functional limitations due to lower extremity musculoskeletal pathology, primarily arthritis. Multiple analysis of covariance with discriminate analysis, adjusted for gait speed, was used to identify the variables discriminating groups. Correlation analysis was used to explore interrelationships among these variables within each group. Healthy elders were discriminated (sensitivity 76%, specificity 82%) from young adults via decreased late-stance ankle plantar flexion angle, increased late-stance knee power absorption, and early-stance hip extensor power generation. Disabled elders were discriminated (sensitivity 74%, specificity 73%) from healthy elders via decreased late-stance ankle plantar flexor moment and power generation, increased early-stance ankle dorsiflexor moment, and late-stance hip flexor moment and power absorption. Relationships among variables showed a higher degree of coupling for the disabled elders compared with the healthy groups, suggesting a reduced ability to alter motor strategies. Our data suggest that, beyond age-related changes, elders with lower extremity dysfunction rely excessively on passive action of hip flexors to provide propulsion in late stance and contralateral ankle dorsiflexors to enhance stability. These findings support a growing body of evidence that gait changes with age and disablement have a neuromuscular basis, which may be informative in a motor control framework for physical therapy interventions.


2012 ◽  
Vol 2012.65 (0) ◽  
pp. 191-192
Author(s):  
Yasuhiro WATANABE ◽  
Katsuhiro OKUMURA ◽  
Yoshie NAKANISHI ◽  
Futoshi WADA ◽  
Noriaki KATO ◽  
...  

2012 ◽  
Vol 21 (3) ◽  
pp. 296-300 ◽  
Author(s):  
Karrie L. Hamstra-Wright ◽  
Kellie Huxel Bliven

Clinical Scenario:The gluteus medius (GM) is thought to play an important role in stabilizing the pelvis and controlling femoral adduction and internal rotation during functional activity. GM weakness, resulting in decreased stabilization and control, has been suggested to be related to lower extremity dysfunction and injury. Many clinicians focus on strengthening the GM to improve lower extremity kinematics for the prevention and rehabilitation of injury. An indirect way to measure GM strength is through electromyography. It is generally assumed that exercises producing higher levels of activation will result in greater strengthening effects.3 Understanding what exercises result in the greatest level of GM activation will assist clinicians in their injury prevention and rehabilitation efforts.Focused Clinical Question:In a healthy adult population, what lower extremity exercises produce the greatest mean GM activation, expressed as a percentage of maximum voluntary isometric contraction?


2020 ◽  
Vol 9 (12) ◽  
pp. 4055
Author(s):  
Takashi Hirai ◽  
Toshitaka Yoshii ◽  
Shuta Ushio ◽  
Jun Hashimoto ◽  
Kanji Mori ◽  
...  

This study aimed to clarify whether ossification predisposition influences clinical symptoms including pain, restriction of activities of daily living, and quality of life in patients with cervical ossification of the posterior longitudinal ligament (OPLL). Cervical ossification predisposition potentially causes neurologic dysfunction, but the relationship between clinical symptoms and radiologic severity of OPLL has not yet been investigated. Data were prospectively collected from 16 institutions across Japan. We enrolled 239 patients with cervical OPLL. The primary outcomes were patient-reported outcomes, including visual analog scale (VAS) pain scores and other questionnaires. Whole-spine computed tomography images were obtained, and correlations were investigated between clinical symptoms and radiologic findings, including the distribution of OPLL, the sum of the levels where OPLL was present (OP-index), and the canal narrowing ratio (CNR) grade. The cervical OP-index was Grade 1 in 113 patients, Grade 2 in 90, and Grade 3 in 36. No significant correlations were found between radiologic outcomes and VAS pain scores. The cervical OP-index was associated with lower extremity function, social dysfunction, and locomotive function. The CNR grade was not correlated with clinical symptoms, but Grade 4 was associated with lower extremity dysfunction. Thickness and extension of ossified lesions may be associated with lower extremity dysfunction in cervical OPLL.


1994 ◽  
Vol 74 (9) ◽  
pp. 861-871 ◽  
Author(s):  
Ulrika Öberg ◽  
Birgitta Öberg ◽  
Tommy Öberg

2002 ◽  
Vol 7 (2) ◽  
pp. 1-4, 12 ◽  
Author(s):  
Christopher R. Brigham

Abstract To account for the effects of multiple impairments, evaluating physicians must provide a summary value that combines multiple impairments so the whole person impairment is equal to or less than the sum of all the individual impairment values. A common error is to add values that should be combined and typically results in an inflated rating. The Combined Values Chart in the AMA Guides to the Evaluation of Permanent Impairment, Fifth Edition, includes instructions that guide physicians about combining impairment ratings. For example, impairment values within a region generally are combined and converted to a whole person permanent impairment before combination with the results from other regions (exceptions include certain impairments of the spine and extremities). When they combine three or more values, physicians should select and combine the two lowest values; this value is combined with the third value to yield the total value. Upper extremity impairment ratings are combined based on the principle that a second and each succeeding impairment applies not to the whole unit (eg, whole finger) but only to the part that remains (eg, proximal phalanx). Physicians who combine lower extremity impairments usually use only one evaluation method, but, if more than one method is used, the physician should use the Combined Values Chart.


2000 ◽  
Vol 5 (3) ◽  
pp. 4-4

Abstract Lesions of the peripheral nervous system (PNS), whether due to injury or illness, commonly result in residual symptoms and signs and, hence, permanent impairment. The AMA Guides to the Evaluation of Permanent Impairment (AMA Guides), Fourth Edition, divides PNS deficits into sensory and motor and includes pain in the former. This article, which regards rating sensory and motor deficits of the lower extremities, is continued from the March/April 2000 issue of The Guides Newsletter. Procedures for rating extremity neural deficits are described in Chapter 3, The Musculoskeletal System, section 3.1k for the upper extremity and sections 3.2k and 3.2l for the lower limb. Sensory deficits and dysesthesia are both disorders of sensation, but the former can be interpreted to mean diminished or absent sensation (hypesthesia or anesthesia) Dysesthesia implies abnormal sensation in the absence of a stimulus or unpleasant sensation elicited by normal touch. Sections 3.2k and 3.2d indicate that almost all partial motor loss in the lower extremity can be rated using Table 39. In addition, Section 4.4b and Table 21 indicate the multistep method used for spinal and some additional nerves and be used alternatively to rate lower extremity weakness in general. Partial motor loss in the lower extremity is rated by manual muscle testing, which is described in the AMA Guides in Section 3.2d.


Sign in / Sign up

Export Citation Format

Share Document