scholarly journals Alleles of Ppd-D1 gene in the collection of Aegilops tauschii accessions and bread wheat varieties

2012 ◽  
Vol 28 (2) ◽  
pp. 149-155 ◽  
Author(s):  
G. O. Chebotar ◽  
S. V. Chebotar ◽  
D. O. Babenko ◽  
I. I. Motsnyy ◽  
A. B. Scherban ◽  
...  
Plants ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 1696
Author(s):  
Mikhail S. Bazhenov ◽  
Anastasiya G. Chernook ◽  
Nikolay P. Goncharov ◽  
Nadezhda N. Chikida ◽  
Mariya Kh. Belousova ◽  
...  

Gibberellin-insensitive reduced height genes are widely spread in modern wheat varieties, making them resistant to lodging under conditions of intensive farming. However, the limited diversity of these genes present in wheat germplasm can limit the adaptability of newly created cultivars to the changing climate. The diversity of the gibberellin signaling pathway genes involved in plant height control—Reduced height 1 (Rht-D1), Gibberellin-insensitive dwarf 1 (Gid1-D) and Gibberellin-insensitive dwarf 2 (Gid2-D)—was studied in the diploid wild goatgrass Aegilops tauschii Coss., one of the ancestral species of the bread wheat (Triticum aestivum L.) and the donor of its D subgenome, using high-throughput sequencing. The examination of 24 Ae. tauschii accessions of different geographical origins revealed a large number of new alleles (haplotypes) not found in bread wheat varieties. Some of the detected polymorphisms lead to changes in the amino acid sequence of proteins. Four isoforms (amino acid sequence variants) were found for the RHT-D1 protein, and two isoforms—for the GID1 and GID2 proteins, each. An analysis of the co-occurrence frequencies of various isoforms of the three proteins showed that their combinations were not random in Ae. tauschii, which may indicate the functional significance of their differences. New alleles of the Rht-D1, Gid1-D, and Gid2-D genes are promising for introgression into bread wheat and studying their effect on plant height and adaptability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Basavalingayya K. Swamy ◽  
Ravikumar Hosamani ◽  
Malarvizhi Sathasivam ◽  
S. S. Chandrashekhar ◽  
Uday G. Reddy ◽  
...  

AbstractHypergravity—an evolutionarily novel environment has been exploited to comprehend the response of living organisms including plants in the context of extra-terrestrial applications. Recently, researchers have shown that hypergravity induces desired phenotypic variability in seedlings. In the present study, we tested the utility of hypergravity as a novel tool in inducing reliable phenotype/s for potential terrestrial crop improvement applications. To investigate, bread wheat seeds (UAS-375 genotype) were subjected to hypergravity treatment (10×g for 12, and 24 h), and evaluated for seedling vigor and plant growth parameters in both laboratory and greenhouse conditions. It was also attempted to elucidate the associated biochemical and hormonal changes at different stages of vegetative growth. Resultant data revealed that hypergravity treatment (10×g for 12 h) significantly enhanced root length, root volume, and root biomass in response to hypergravity. The robust seedling growth phenotype may be attributed to increased alpha-amylase and TDH enzyme activities observed in seeds treated with hypergravity. Elevated total chlorophyll content and Rubisco (55 kDa) protein expression across different stages of vegetative growth in response to hypergravity may impart physiological benefits to wheat growth. Further, hypergravity elicited robust endogenous phytohormones dynamics in root signifying altered phenotype/s. Collectively, this study for the first time describes the utility of hypergravity as a novel tool in inducing reliable root phenotype that could be potentially exploited for improving wheat varieties for better water usage management.


2009 ◽  
Vol 37 (4) ◽  
pp. 489-498 ◽  
Author(s):  
N. Iqbal ◽  
A. Tabasum ◽  
H. Sayed ◽  
A. Hameed

Euphytica ◽  
1981 ◽  
Vol 30 (2) ◽  
pp. 355-361 ◽  
Author(s):  
Michael D. Gale ◽  
Geraldine A. Marshall ◽  
M. V. Rao

2019 ◽  
Vol 5 (2) ◽  
pp. 29-40
Author(s):  
Faranak Khanmakoo ◽  
Seyed Abolghasem Mohammadi ◽  
Robab Salami ◽  
Saeed Aharizad ◽  
◽  
...  

2021 ◽  
pp. 312-319
Author(s):  
Abdulwahid Saif ◽  
Aref Al-Shamiri ◽  
Abdulnour Shaher

Abstract M3 derived mutants from two bread wheat varieties, namely, 'Giza 186' and 'Saha 93', were screened for resistance to the rust Ug99 at two locations in Njoro (Kenya) and in Tihama (Yemen). At Tihama, two mutants of 'Giza 186' (G-M2-2010-1-28 and G-M2-2010-41-52) and four mutants of 'Saha 93' (S-M2-2010-16-12, S-M2-2010-21-13, S-M2-2010-22-14 and S-M2-2010-27-15) were seen to be resistant at both seedling and adult stages while their parents were resistant at seedling stage and susceptible at adult stage. In Kenya, the resistance score of the mutants was slightly different from those obtained at Tihama. The mutants G-M2-2010-1-28 and G-M2-2010-41-52 were stable in their level of resistance recorded at Tihama, but only two mutants of 'Saha 93' (S-M2-2010-16-12 and S-M2-2010-27-15) were resistant at both growth stages. S-M2-2010-22-14 and S-M2-2010-21-13 were resistant at the seedling stage while susceptible at adult stage. Further selection on these mutants for yield potential, agronomic performance and yellow rust disease resistance, as well as on selected mutants of both 'Giza 186' and 'Saha 93', at M5-M6 stages identified superior mutant lines compared with the two parents 'Saha 93' and 'Giza 186'. These included the line Erra-010-GM2w-41-52-40, which ranked first in yield (3768 kg/ha), followed by the lines Erra-010-SwM2-16-12-19, Erra-010-GM2w-1-28-18 and Erra-010-SwM2-22-14-6. Moreover, it can be concluded that Erra-010-GM2w-41-52-40 and Erra-010-SwM2-16-12-19 are highly recommended for their resistance to stem and yellow rust diseases as well as for yield potential and preference by farmers. Therefore, efforts are in progress to increase their seeds for dissemination over a wide range of farmers and wheat areas where rust diseases are an epidemic, and for registration of the lines as improved mutant varieties.


Sign in / Sign up

Export Citation Format

Share Document