scholarly journals Corn plant comparative reactions to artificial dehydration

Author(s):  
L. Ye. Serhieieva ◽  
S. I. Mykhalska ◽  
V. M. Kurchii ◽  
O. M. Tyshchenko

Aim. There are maize plants of inbred line L-370 (control) and from T4 progeny of plants transformed via in planta Agrobacterium-mediated transformation with LBA4404 strain harboring pBi2E with double-stranded RNA-suppressor of the proline dehydrogenase gene. The free proline and sucrose levels, sucrose/fructose ratio during period of desicca-tion/rehydration were investigated. Methods. Maize T4 progeny and initial plants of L-370 line were cultivated in con-tainers. Variants were tested under short term (4 days) dehydration and after 3.5 hours of rehydration. The free proline and carbohydrates levels were estimated at those times of the experiment. Results. The short-term water deficit did not create pathological changes in plants. But the free proline levels rose in leaves of all variants. At the same time the ami-no acid levels under stress condition in T4 plans were higher than in L-370-plants. After 3.5 hours of rehydration the proline content in control plants decreased and stayed without changes in T4 plans. In T4 plants the carbohydrate meta-bolism systems energy maintained the stability of the sucrose/fructose ratio during the whole time of experiment. Conclusions. The T4 plants high level of water stress tolerance is a possible result of transgene activity.Keywords: Zea mays, Agrobacterium-mediated transformation, T4-progeny, short-term water stress, dehydration, proline sucrose.

1970 ◽  
Vol 21 ◽  
pp. 178-182
Author(s):  
L. E. Sergeeva ◽  
M. O. Dykun ◽  
L. I. Bronnikova

Aim. There are corn cell cultures, obtained from plants of maize inbred line L-390 (control) and from T2 progeny (L-390-T) of plants transformed via in planta Agrobacterium-mediated transformation with LBA4404 strain harboring pBi2E with double-stranded RNA-suppressor of the proline dehydrogenase gene. The reactions of cell variants, cultivated under hard osmotic stress pressure were investigated. Methods. 25.0 g/l of sea water salts or 0.8 M of mannitol were added to F1 cultural medium. Corn cell variants were tested under osmotic stress pressure. The free proline and protein levels were estimated on 14-th and 34-th days of the experiment. Results. L-390-T cell cultures maintained viability and wild type cultures died at the end of experiment. The levels of free proline rose in calli tissues, cultivated on nutrition medium with the addition of mannitol or salinity. At the same time the proline levels of L-390-T cells were products of biosynthesis. While the proline content in control cultures elevated after the degradation of proline rich proteins (PRPs). Conclusions. The L-390-T high level of osmotic stress tolerance is a possible result of transgene activity. Keywords: Zea mays, cell cultures, Agrobacterium-mediated transformation salinity, water stress, proline.


2019 ◽  
Vol 78 (2) ◽  
pp. 125-134 ◽  
Author(s):  
Sivanantham Amrutha ◽  
Abdul Bari Muneera Parveen ◽  
Muthusamy Muthupandi ◽  
Veerasamy Sivakumar ◽  
Raman Nautiyal ◽  
...  

Abstract The genus Eucalyptus occurs in a wide range of environmental conditions, including rainforests, subal-pine, arid/semi-arid and moist temperate zones. It includes species with the capacity to cope with extremely low water potential. This study aims to screen water stress tolerance in two Eucalyptus species under nursery conditions. Inter-specific variation in morphological, physiological, biochemical and molecular parameters in two Eucalyptus species (E. tereticornis and E. camaldulensis) with contrasting levels of tolerance to progressive short term water-deprived condition was evaluated. Water stress reduced growth measured in terms of root:shoot ratio and specific leaf area (SLA), photosynthetic parameters, leaf water potential and relative water content (RWC) in both genotypes. Biochemical parameters including total sugars, phenol, phytohormones (indole acetic acid and abscisic acid) and proline were found to significantly increase during stress in both genotypes. Water responsive transcripts like osmotin and DREB/CBF registered significant expression variation in the two genotypes, suggesting their key role in regulating water stress tolerance in Eucalyptus.


2013 ◽  
Vol 170 (9) ◽  
pp. 864-873 ◽  
Author(s):  
Imen Amara ◽  
Montserrat Capellades ◽  
M. Dolors Ludevid ◽  
Montserrat Pagès ◽  
Adela Goday

2010 ◽  
Vol 76 (16) ◽  
pp. 5452-5462 ◽  
Author(s):  
Matthias Kurz ◽  
Adrien Y. Burch ◽  
Britta Seip ◽  
Steven E. Lindow ◽  
Harald Gross

ABSTRACT The foliar pathogen Pseudomonas syringae pv. syringae exhibits an exceptional ability to survive on asymptomatic plants as an epiphyte. Intermittent wetting events on plants lead to osmotic and matric stresses which must be tolerated for survival as an epiphyte. In this study, we have applied bioinformatic, genetic, and biochemical approaches to address water stress tolerance in P. syringae pv. syringae strain B728a, for which a complete genome sequence is available. P. syringae pv. syringae B728a is able to produce the compatible solutes betaine, ectoine, N-acetylglutaminylglutamine amide (NAGGN), and trehalose. Analysis of osmolyte profiles of P. syringae pv. syringae B728a under a variety of in vitro and in planta conditions reveals that the osmolytes differentially contribute to water stress tolerance in this species and that they interact at the level of transcription to yield a hierarchy of expression. While the interruption of a putative gene cluster coding for NAGGN biosynthesis provided the first experimental evidence of the NAGGN biosynthetic pathway, application of this knockout strain and also a gfp reporter gene fusion strain demonstrated the small contribution of NAGGN to cell survival and desiccation tolerance of P. syringae pv. syringae B728a under in planta conditions. Additionally, detailed investigation of ectC, an orphan of the ectoine cluster (lacking the ectA and ectB homologs), revealed its functionality and that ectoine production could be detected in NaCl-amended cultures of P. syringae pv. syringae B728a to which sterilized leaves of Syringa vulgaris had been added.


2020 ◽  
Vol 15 ◽  
Author(s):  
Zakia Akter ◽  
Anamul Haque ◽  
Md. Sabir Hossain ◽  
Firoz Ahmed ◽  
Md Asiful Islam

Background: Cholera, a diarrheal illness causes millions of deaths worldwide due to large outbreaks. Monoclonal antibody used as therapeutic purposes of cholera are prone to be unstable due to various factors including self-aggregation. Objectives: In this bioinformatic analysis, we identified the aggregation prone regions (APRs) of different immunogens of antibody sequences (i.e., CTB, ZnM-CTB, ZnP-CTB, TcpA-CT-CTB, ZnM-TcpA-CT-CTB, ZnP-TcpA-CT-CTB, ZnM-TcpA, ZnP-TcpA, TcpA-CT-TcpA, ZnM-TcpA-CT-TcpA, ZnP-TcpA-CT-TcpA, Ogawa, Inaba and ZnM-Inaba) raised against Vibrio cholerae. Methods: To determine APRs in antibody sequences that were generated after immunizing Vibrio cholerae immunogens on Mus musculus, a total of 94 sequences were downloaded as FASTA format from a protein database and the algorithms such as Tango, Waltz, PASTA 2.0, and AGGRESCAN were followed to analyze probable APRs in all of the sequences. Results: A remarkably high number of regions in the monoclonal antibodies were identified to be APRs which could explain a cause of instability/short term protection of anticholera vaccine. Conclusion: To increase the stability, it would be interesting to eliminate the APR residues from the therapeutic antibodies in a such way that the antigen binding sites or the complementarity determining region loops involved in antigen recognition are not disrupted.


2003 ◽  
Vol 792 ◽  
Author(s):  
V. Aubin ◽  
D. Caurant ◽  
D. Gourier ◽  
N. Baffier ◽  
S. Esnouf ◽  
...  

ABSTRACTProgress on separating the long-lived fission products from the high level radioactive liquid waste (HLW) has led to the development of specific host matrices, notably for the immobilization of cesium. Hollandite (nominally BaAl2Ti6O16), one of the main phases constituting Synroc, receives renewed interest as specific Cs-host wasteform. The radioactive cesium isotopes consist of short-lived Cs and Cs of high activities and Cs with long lifetime, all decaying according to Cs+→Ba2++e- (β) + γ. Therefore, Cs-host forms must be both heat and (β,γ)-radiation resistant. The purpose of this study is to estimate the stability of single phase hollandite under external β and γ radiation, simulating the decay of Cs. A hollandite ceramic of simple composition (Ba1.16Al2.32Ti5.68O16) was essentially irradiated by 1 and 2.5 MeV electrons with different fluences to simulate the β particles emitted by cesium. The generation of point defects was then followed by Electron Paramagnetic Resonance (EPR). All these electron irradiations generated defects of the same nature (oxygen centers and Ti3+ ions) but in different proportions varying with electron energy and fluence. The annealing of irradiated samples lead to the disappearance of the latter defects but gave rise to two other types of defects (aggregates of light elements and titanyl ions). It is necessary to heat at relatively high temperature (T=800°C) to recover an EPR spectrum similar to that of the pristine material. The stability of hollandite phase under radioactive cesium irradiation during the waste storage is discussed.


Sign in / Sign up

Export Citation Format

Share Document