Anti-transpirant role in improving the morphological growth traits of maize plants subjected to water stress!

2018 ◽  
Vol 19 (4) ◽  
2006 ◽  
Vol 33 (3) ◽  
pp. 209 ◽  
Author(s):  
Jacques Trouverie ◽  
Jean-Louis Prioul

The export rate and the carbohydrate concentration were measured in maize plants submitted to water deprivation either at the fourth leaf stage or at pollination. Export rate was evaluated by a short pulse of labelling with 14CO2 followed by a 10-h chase. In stressed plants, 14C fixation was strongly reduced. When radioactivity was expressed relative to the initial value, the time course of label export from the labelled zone showed a faster decline in stressed plants than in well-watered plants. This was observed both under mild stress (fourth leaf stage) and severe stress (pollination stage). Another consequence of drought stress was an increase in fourth leaf vacuolar invertase activity and an increase in hexoses, which accumulated to the same content as sucrose. This occurred without a significant decrease in starch. At pollination stage, despite a large decrease in absolute quantity of 14C entering kernels, the proportion of leaf 14C export recovered in the kernel was not modified after a 4-d water deprivation, i.e. at day 0 after pollination (0 DAP), and was multiplied by a factor of 2–3 at 12 DAP. The major conclusion arising from these data appears to be an improvement of both leaf export and kernel import efficiency under water stress.


1974 ◽  
Vol 14 (66) ◽  
pp. 76
Author(s):  
GJ Luke

The relative water contents (RWC) of the top and bottom leaves of maize plants were measured. The RWC of the top leaf was higher than that of the bottom leaf when the plant was under water stress. Photographic standards based on the RWC of the whole plant were developed and tested against plants in the field. The results showed that the standards give an accurate indication of the plant's water status. Standards based on the upper leaf only would result in irrigations too infrequent to prevent severe restrictions to photosynthesis.


2019 ◽  
Vol 11 (18) ◽  
pp. 5086 ◽  
Author(s):  
Libing Song ◽  
Jiming Jin ◽  
Jianqiang He

In this study, we investigated the effects of water stress on the growth and yield of summer maize (Zea mays L.) over four phenological stages: Seedling, jointing, heading, and grain-filling. Water stress treatments were applied during each of these four stages in a water-controlled field in the Guanzhong Plain, China between 2013 and 2016. We found that severe water stress during the seedling stage had a greater effect on the growth and development of maize than stress applied during the other three stages. Water stress led to lower leaf area index (LAI) and biomass owing to reduced intercepted photosynthetically active radiation (IPAR) and radiation-use efficiency (RUE). These effects extended to the reproductive stage and eventually reduced the unit kernel weight and yield. In addition, the chlorophyll content in the leaf remained lower, even though irrigation was applied partially or fully after the seedling stage. Severe and prolonged water stress in maize plants during the seedling stage may damage the structure of the photosynthetic membrane, resulting in lower chlorophyll content, and therefore RUE, than those in the plants that did not experience water stress at the seedling stage. Maize plants with such damage did not show a meaningful recovery even when irrigation levels during the rest of the growth period were the same as those applied to the plants not subjected to water stress. The results of our field experiments suggest that an unrecoverable yield loss could occur if summer maize were exposed to severe and extended water stress events during the seedling stage.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0254906
Author(s):  
Sidra Shafiq ◽  
Nudrat Aisha Akram ◽  
Muhammad Ashraf ◽  
Mohammad S. AL-Harbi ◽  
Bassem N. Samra

Now-a-days, plant-based extracts, as a cheap source of growth activators, are being widely used to treat plants grown under extreme climatic conditions. So, a trial was conducted to assess the response of two maize (Zea mays L.) varieties, Sadaf (drought tolerant) and Sultan (drought sensitive) to foliar-applied sugar beet extract (SBE) under varying water-deficit conditions. Different SBE (control, 1%, 2%, 3% & 4%) levels were used in this study, and plants were exposed to water-deficit [(75% and 60% of field capacity (FC)] and control (100% FC) conditions. It was observed that root and shoot dry weights (growth), total soluble proteins, RWC-relative water contents, total phenolics, chlorophyll pigments and leaf area per plant decreased under different water stress regimes. While, proline, malondialdehyde (MDA), RMP-relative membrane permeability, H2O2-hydrogen peroxide and the activities of antioxidant enzymes [CAT-catalase, POD-peroxidase and SOD-superoxide dismutase] were found to be improved in water stress affected maize plants. Exogenous application of varying levels of SBE ameliorated the negative effects of water-deficit stress by enhancing the growth attributes, photosynthetic pigments, RWC, proline, glycinebetaine (GB), activities of POD and CAT enzymes and levels of total phenolics, whereas it reduced the lipid peroxidation in both maize varieties under varying water stress levels. It was noted that 3% and 4% levels of SBE were more effective than the other levels used in enhancing the growth as well as other characteristics of the maize varieties. Overall, the sugar beet extract proved to be beneficial for improving growth and metabolism of maize plants exposed to water stress.


Author(s):  
L. Ye. Serhieieva ◽  
S. I. Mykhalska ◽  
V. M. Kurchii ◽  
O. M. Tyshchenko

Aim. There are maize plants of inbred line L-370 (control) and from T4 progeny of plants transformed via in planta Agrobacterium-mediated transformation with LBA4404 strain harboring pBi2E with double-stranded RNA-suppressor of the proline dehydrogenase gene. The free proline and sucrose levels, sucrose/fructose ratio during period of desicca-tion/rehydration were investigated. Methods. Maize T4 progeny and initial plants of L-370 line were cultivated in con-tainers. Variants were tested under short term (4 days) dehydration and after 3.5 hours of rehydration. The free proline and carbohydrates levels were estimated at those times of the experiment. Results. The short-term water deficit did not create pathological changes in plants. But the free proline levels rose in leaves of all variants. At the same time the ami-no acid levels under stress condition in T4 plans were higher than in L-370-plants. After 3.5 hours of rehydration the proline content in control plants decreased and stayed without changes in T4 plans. In T4 plants the carbohydrate meta-bolism systems energy maintained the stability of the sucrose/fructose ratio during the whole time of experiment. Conclusions. The T4 plants high level of water stress tolerance is a possible result of transgene activity.Keywords: Zea mays, Agrobacterium-mediated transformation, T4-progeny, short-term water stress, dehydration, proline sucrose.


Sign in / Sign up

Export Citation Format

Share Document