scholarly journals Genome-Driven Investigation of Compatible Solute Biosynthesis Pathways of Pseudomonas syringae pv. syringae and Their Contribution to Water Stress Tolerance

2010 ◽  
Vol 76 (16) ◽  
pp. 5452-5462 ◽  
Author(s):  
Matthias Kurz ◽  
Adrien Y. Burch ◽  
Britta Seip ◽  
Steven E. Lindow ◽  
Harald Gross

ABSTRACT The foliar pathogen Pseudomonas syringae pv. syringae exhibits an exceptional ability to survive on asymptomatic plants as an epiphyte. Intermittent wetting events on plants lead to osmotic and matric stresses which must be tolerated for survival as an epiphyte. In this study, we have applied bioinformatic, genetic, and biochemical approaches to address water stress tolerance in P. syringae pv. syringae strain B728a, for which a complete genome sequence is available. P. syringae pv. syringae B728a is able to produce the compatible solutes betaine, ectoine, N-acetylglutaminylglutamine amide (NAGGN), and trehalose. Analysis of osmolyte profiles of P. syringae pv. syringae B728a under a variety of in vitro and in planta conditions reveals that the osmolytes differentially contribute to water stress tolerance in this species and that they interact at the level of transcription to yield a hierarchy of expression. While the interruption of a putative gene cluster coding for NAGGN biosynthesis provided the first experimental evidence of the NAGGN biosynthetic pathway, application of this knockout strain and also a gfp reporter gene fusion strain demonstrated the small contribution of NAGGN to cell survival and desiccation tolerance of P. syringae pv. syringae B728a under in planta conditions. Additionally, detailed investigation of ectC, an orphan of the ectoine cluster (lacking the ectA and ectB homologs), revealed its functionality and that ectoine production could be detected in NaCl-amended cultures of P. syringae pv. syringae B728a to which sterilized leaves of Syringa vulgaris had been added.

2001 ◽  
Vol 47 (2) ◽  
pp. 123-129 ◽  
Author(s):  
M Abadias ◽  
N Teixidó ◽  
J Usall ◽  
I Viñas ◽  
N Magan

The biocontrol agent Candida sake was cultured on either an unmodified molasses-based medium (water activity, aw0.996) or on water stressed media produced by the addition of glycerol, glucose, NaCl, sorbitol, or proline to 0.98, and 0.96 awfor 24, 48, and 72 h, to study their impact on subsequent cell viability, and on concentrations of endogenous sugars (trehalose and glucose) and polyols (glycerol, erythritol, arabitol, and mannitol). The viability of cells of different ages cultured on these media was evaluated on NYDA medium with freely available water (aw0.995), and on medium modified with polyethylene glycol to aw0.95. Regardless of solute used, viable counts of cells grown on molasses-based medium (aw0.98) were equal to or higher than those obtained from the medium with water freely available. The amino acid proline stimulated growth at 10% concentration. In contrast, water stress induced by addition of NaCl, glucose, or sorbitol at aw0.96 caused a significant reduction in viable counts. Older cultures were more resistant to water stress. Glycerol and arabitol were the main solutes accumulated by C. sake cells in response to lowered aw. Intracellular concentration of these polyols depended more on the solute used to adjust the awthan on the awitself. Candida sake was more resistant to water stress with higher intracellular concentration of glycerol and erythritol.Key words: compatible solutes, polyols, sugars, improved viability, formulation.


Plant Science ◽  
1997 ◽  
Vol 128 (2) ◽  
pp. 217-223 ◽  
Author(s):  
Quintero-Higuera Marı́a Fernanda ◽  
Santos-Dı́az Marı́a del Socorro ◽  
Garcı́a-de la Cruz Ramón Fernando

2001 ◽  
Vol 28 (11) ◽  
pp. 1095 ◽  
Author(s):  
Hernán R. Lascano ◽  
Gerardo E. Antonicelli ◽  
Celina M. Luna ◽  
Mariana N. Melchiorre ◽  
Leonardo D. Gómez ◽  
...  

The participation of the antioxidant system in the drought tolerance of wheat cultivars (Triticum aestivum L.) was studied under field and in vitro conditions. Under field conditions, drought tolerance was evaluated by the capacity to maintain the grain yield under drought, which was higher in cvv. Elite and La Paz than in the sensitive cvv. Oasis and Cruz Alta. Tolerant cultivars showed lower relative water content (RWC) and lower above-ground vegetative biomass than sensitive cultivars. Field assays did not show a clear correlation between water-stress tolerance and antioxidant system behaviour. However, when leaves of cvv. with contrasting drought tolerance were subjected to osmotic stress in vitro, clear differences in the antioxidant system activity and oxidative damage between cvv. were observed. In the tolerant cultivar Elite, it was possible to observe an increase in ascorbate peroxidase (APX), superoxide dismutase (SOD) and glutathione reductase (GR) activities, a higher glutathione (GSH) and ascorbate content and less oxidative damage than in the sensitive cultivar Oasis, which showed no changes or only slight decreases in the enzyme activities. These results indicate that water stress tolerance is in part associated with the antioxidant system activity, and suggest that the behaviour of the antioxidant systemin vitro assays can be used as an early selection tool.


Plants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 259
Author(s):  
Mahmoud F. Seleiman ◽  
Nasser Al-Suhaibani ◽  
Nawab Ali ◽  
Mohammad Akmal ◽  
Majed Alotaibi ◽  
...  

Drought stress, being the inevitable factor that exists in various environments without recognizing borders and no clear warning thereby hampering plant biomass production, quality, and energy. It is the key important environmental stress that occurs due to temperature dynamics, light intensity, and low rainfall. Despite this, its cumulative, not obvious impact and multidimensional nature severely affects the plant morphological, physiological, biochemical and molecular attributes with adverse impact on photosynthetic capacity. Coping with water scarcity, plants evolve various complex resistance and adaptation mechanisms including physiological and biochemical responses, which differ with species level. The sophisticated adaptation mechanisms and regularity network that improves the water stress tolerance and adaptation in plants are briefly discussed. Growth pattern and structural dynamics, reduction in transpiration loss through altering stomatal conductance and distribution, leaf rolling, root to shoot ratio dynamics, root length increment, accumulation of compatible solutes, enhancement in transpiration efficiency, osmotic and hormonal regulation, and delayed senescence are the strategies that are adopted by plants under water deficit. Approaches for drought stress alleviations are breeding strategies, molecular and genomics perspectives with special emphasis on the omics technology alteration i.e., metabolomics, proteomics, genomics, transcriptomics, glyomics and phenomics that improve the stress tolerance in plants. For drought stress induction, seed priming, growth hormones, osmoprotectants, silicon (Si), selenium (Se) and potassium application are worth using under drought stress conditions in plants. In addition, drought adaptation through microbes, hydrogel, nanoparticles applications and metabolic engineering techniques that regulate the antioxidant enzymes activity for adaptation to drought stress in plants, enhancing plant tolerance through maintenance in cell homeostasis and ameliorates the adverse effects of water stress are of great potential in agriculture.


Rhizosphere ◽  
2021 ◽  
pp. 100367
Author(s):  
Zohreh Ghanbarzadeh ◽  
Hajar Zamani ◽  
Sasan Mohsenzadeh ◽  
Łukasz Marczak ◽  
Maciej Stobiecki ◽  
...  

Author(s):  
Mara Quaglia ◽  
Marika Bocchini ◽  
Benedetta Orfei ◽  
Roberto D’Amato ◽  
Franco Famiani ◽  
...  

AbstractThe purpose of this study was to determine whether zinc phosphate treatments of tomato plants (Solanum lycopersicum L.) can attenuate bacterial speck disease severity through reduction of Pseudomonas syringae pv. tomato (Pst) growth in planta and induce morphological and biochemical plant defence responses. Tomato plants were treated with 10 ppm (25.90 µM) zinc phosphate and then spray inoculated with strain DAPP-PG 215, race 0 of Pst. Disease symptoms were recorded as chlorosis and/or necrosis per leaf (%) and as numbers of necrotic spots. Soil treatments with zinc phosphate protected susceptible tomato plants against Pst, with reductions in both disease severity and pathogen growth in planta. The reduction of Pst growth in planta combined with significantly higher zinc levels in zinc-phosphate-treated plants indicated direct antimicrobial toxicity of this microelement, as also confirmed by in vitro assays. Morphological (i.e. callose apposition) and biochemical (i.e., expression of salicylic-acid-dependent pathogenesis-related protein PR1b1 gene) defence responses were induced by the zinc phosphate treatment, as demonstrated by histochemical and qPCR analyses, respectively. In conclusion, soil treatments with zinc phosphate can protect tomato plants against Pst attacks through direct antimicrobial activity and induction of morphological and biochemical plant defence responses.


2021 ◽  
Vol 22 (14) ◽  
pp. 7440
Author(s):  
Shraddha K. Dahale ◽  
Daipayan Ghosh ◽  
Kishor D. Ingole ◽  
Anup Chugani ◽  
Sang Hee Kim ◽  
...  

Pseudomonas syringae-secreted HopA1 effectors are important determinants in host range expansion and increased pathogenicity. Their recent acquisitions via horizontal gene transfer in several non-pathogenic Pseudomonas strains worldwide have caused alarming increase in their virulence capabilities. In Arabidopsis thaliana, RESISTANCE TO PSEUDOMONAS SYRINGAE 6 (RPS6) gene confers effector-triggered immunity (ETI) against HopA1pss derived from P. syringae pv. syringae strain 61. Surprisingly, a closely related HopA1pst from the tomato pathovar evades immune detection. These responsive differences in planta between the two HopA1s represents a unique system to study pathogen adaptation skills and host-jumps. However, molecular understanding of HopA1′s contribution to overall virulence remain undeciphered. Here, we show that immune-suppressive functions of HopA1pst are more potent than HopA1pss. In the resistance-compromised ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) null-mutant, transcriptomic changes associated with HopA1pss-elicited ETI are still induced and carry resemblance to PAMP-triggered immunity (PTI) signatures. Enrichment of HopA1pss interactome identifies proteins with regulatory roles in post-transcriptional and translational processes. With our demonstration here that both HopA1 suppress reporter-gene translations in vitro imply that the above effector-associations with plant target carry inhibitory consequences. Overall, with our results here we unravel possible virulence role(s) of HopA1 in suppressing PTI and provide newer insights into its detection in resistant plants.


Sign in / Sign up

Export Citation Format

Share Document