scholarly journals Swainsonine Activates Mitochondria-mediated Apoptotic Pathway in Human Lung Cancer A549 Cells and Retards the Growth of Lung Cancer Xenografts

2012 ◽  
Vol 8 (3) ◽  
pp. 394-405 ◽  
Author(s):  
Zhaocai Li ◽  
Xingang Xu ◽  
Yong Huang ◽  
Li Ding ◽  
Zhisheng Wang ◽  
...  
2019 ◽  
Vol 19 (12) ◽  
pp. 1454-1462 ◽  
Author(s):  
Nana Niu ◽  
Tingli Qu ◽  
Jinfang Xu ◽  
Xiaolin Lu ◽  
Graham J. Bodwell ◽  
...  

Background: Lung cancer is one of the most prevalent malignancies and thus the development of novel therapeutic agents for managing lung cancer is imperative. Tetrandrine, a bis-benzyltetrahydroisoquinoline alkaloid isolated from Stephania tetrandra S. Moore, has been found to exert cytotoxic effects on cancerous cells. Methods: A series of 5-alkynyltetrandrine derivatives was synthesized via the Sonogashira cross-coupling reactions and evaluated as potential anti-tumor agents. The anti-tumor activities of 12 compounds on lung cancer cells (A549) were evaluated using the MTT method. The population of apoptotic cells was measured using a TUNEL assay. Real-time PCR quantified the gene expression levels of Bcl-2, Bax, survivin and caspase-3. The content of Cyt-C was detected using a Human Cyt-C ELISA kit. Results: Most of these compounds exhibited better activities than tetrandrine itself on A549 cells. Among them, compound 7 showed the highest cytotoxicity among the tested compounds against human lung adenocarcinoma A549 cells with an IC50 of 2.94 µM. Preliminary mechanistic studies indicated that compound 7 induced apoptosis of human lung cancer A549 cells and increased the level of the proapoptotic gene Bax, release of Cyt-C from mitochondria and activation of caspase-3 genes. Conclusion: The results suggest that compound 7 exerts its antitumor activity against A549 cells through the induction of the intrinsic (mitochondrial) apoptotic pathway. These findings will contribute to the future design of more effective anti-tumor agents in lung cancer therapy.


Author(s):  
Elham Hoveizi ◽  
Fatemeh Fakharzadeh Jahromi

Background: The development of effective anticancer drugs is a significant health issue. Previous studies showed that members of the benzimidazole family have anticancer effects on several cancers Objectives: The present study investigated the cytotoxic effect of flubendazole on A549 human lung cancer cells. Methods: The A549 cells were treated with flubendazole at 1, 2, 5, and 10 µM concentrations for three days. Cell viability was measured by the MTT assay and Acridine orange staining. Also, the expressions of P62 and Beclin -1 were analyzed by qRT-PCR analysis. Results: Cell viability of A549 cells, in a concentration-dependent manner, showed significant differences between the treatment and control groups, and the IC50 value was determined to be 2 µM. Also, flubendazole reduced the expression of P62 and increased the expression of Beclin 1 in treated cells. Conclusions: Flubendazole induces cell death in A549 cells in a dose and time-dependent manner and can offer new factors in lung cancer therapeutic strategies.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Weidong Ma ◽  
Ziyuan Wang ◽  
Yan Zhao ◽  
Qibin Wang ◽  
Yonghong Zhang ◽  
...  

Inflammatory reactions mediated by the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome contributes to non-small-cell lung cancer (NSCLC) progression, particularly in patients with bacterial infections. Salidroside (SAL) has recently been shown to suppress lipopolysaccharide- (LPS-) induced NSCLC proliferation and migration, but its mechanism of action remains unclear. It has been shown that SAL improves metabolic inflammation in diabetic rodents through AMP-activated protein kinase- (AMPK-) dependent inhibition of the NLRP3 inflammasome. However, whether the NLRP3 inflammasome is regulated by SAL in NSCLC cells and how its underlying mechanism(s) can be determined require clarification. In this study, human lung alveolar basal carcinoma epithelial (A549) cells were treated with LPS, and the effects of SAL on cell proliferation, migration, AMPK activity, reactive oxygen species (ROS) production, and NLRP3 inflammasome activation were investigated. We found that LPS induction increases the proliferation and migration of A549 cells which was suppressed by SAL. Moreover, SAL protected A549 cells against LPS-induced AMPK inhibition, ROS production, and NLRP3 inflammasome activation. Blocking AMPK using Compound C almost completely suppressed the beneficial effects of SAL. In summary, these results indicate that SAL suppresses the proliferation and migration of human lung cancer cells through AMPK-dependent NLRP3 inflammasome regulation.


2012 ◽  
Vol 24 (2) ◽  
pp. 109-115 ◽  
Author(s):  
Li Li ◽  
George G. Chen ◽  
Ying-nian Lu ◽  
Yi Liu ◽  
Ke-feng Wu ◽  
...  

Author(s):  
Wanfeng Guo ◽  
Kazi Ahmed ◽  
Yanpin Hui ◽  
Guozheng Guo ◽  
Jian Li

Sign in / Sign up

Export Citation Format

Share Document