scholarly journals GATA4-driven miR-206-3p signatures control orofacial bone development by regulating osteogenic and osteoclastic activity

Theranostics ◽  
2021 ◽  
Vol 11 (17) ◽  
pp. 8379-8395
Author(s):  
Shuyu Guo ◽  
Jiawen Gu ◽  
Junqing Ma ◽  
Rongyao Xu ◽  
Qingheng Wu ◽  
...  
2020 ◽  
Vol 139 ◽  
pp. 93-102 ◽  
Author(s):  
MF Van Bressem ◽  
P Duignan ◽  
JA Raga ◽  
K Van Waerebeek ◽  
N Fraijia-Fernández ◽  
...  

Crassicauda spp. (Nematoda) infest the cranial sinuses of several odontocetes, causing diagnostic trabecular osteolytic lesions. We examined skulls of 77 Indian Ocean humpback dolphins Sousa plumbea and 69 Indo-Pacific bottlenose dolphins Tursiops aduncus, caught in bather-protecting nets off KwaZulu-Natal (KZN) from 1970-2017, and skulls of 6 S. plumbea stranded along the southern Cape coast in South Africa from 1963-2002. Prevalence of cranial crassicaudiasis was evaluated according to sex and cranial maturity. Overall, prevalence in S. plumbea and T. aduncus taken off KZN was 13 and 31.9%, respectively. Parasitosis variably affected 1 or more cranial bones (frontal, pterygoid, maxillary and sphenoid). No significant difference was found by gender for either species, allowing sexes to be pooled. However, there was a significant difference in lesion prevalence by age, with immature T. aduncus 4.6 times more likely affected than adults, while for S. plumbea, the difference was 6.5-fold. As severe osteolytic lesions are unlikely to heal without trace, we propose that infection is more likely to have a fatal outcome for immature dolphins, possibly because of incomplete bone development, lower immune competence in clearing parasites or an over-exuberant inflammatory response in concert with parasitic enzymatic erosion. Cranial osteolysis was not observed in mature males (18 S. plumbea, 21 T. aduncus), suggesting potential cohort-linked immune-mediated resistance to infestation. Crassicauda spp. may play a role in the natural mortality of S. plumbea and T. aduncus, but the pathogenesis and population level impact remain unknown.


2016 ◽  
Vol 6 (1) ◽  
pp. 846-852
Author(s):  
Olugbenga Adeniran Ogunwole ◽  
B. C Majekodunmi ◽  
R. A Faboyede ◽  
D. Ogunsiji

Effects of supplemental dietary lysine and methionine in a Groundnut Cake (GNC) based diets on meat and bone characteristics of broiler chickens were investigated. In a completely randomized design, a total of 168 one - day – old Arbor acre broiler chicks were randomly allocated to seven dietary treatments each in triplicate of eight birds per replicate. The Seven starter and finishers’ diets were: GNC based diets without any amino acid (lysine or methionine) supplementation (T1); GNC diet + 0.2% lysine (T2); GNC diet + 0.4% lysine (T3); GNC diet + 0.2% methionine (T4); GNC diet + 0.4% methionine (T5); GNC diet + 0.2 lysine and 0.2% methionine (T6) and GNC diet + 0.4% lysine and 0.4% methionine (T7). Experimental diets and water were offered to birds ad libitum in an experiment lasting six-week. At day 42, two birds per replicate were slaughtered, meat and bone characteristics determined. There were significant variations (P<0.05) in the crude protein (%) and ether extract (%), pH1 and pH2 of meat. Thiobarbituric acid reactive substances composition of meat at days 0, 5, and 10 were similar (P<0.05) and were not affected by dietary amino acid supplementation. Tibiotarsal index (mg/mm) of bone (22.10, 27.25, 33.35, 31.40, 28.70, 31.45 and 29.75 for broilers on T1, T2, T3, T4, T5, T6 and T7, respectively) were increased significantly (P<0.05) by amino acid supplementation. Significantly differences (P<0.05) were observed in the calcium, phosphorus and potassium (%) contents of broilers’ bone across treatments. Supplemental lysine and both lysine and methionine improved meat quality and bone development of broiler chickens in this study.


2018 ◽  
Vol 60 (4) ◽  
pp. 52-58 ◽  
Author(s):  
Thi Kieu Oanh Pham ◽  
Van Cuong Pham ◽  
Thi Thuy Lai ◽  
Duc Long Tran ◽  
Thanh Thuy To ◽  
...  
Keyword(s):  

2008 ◽  
Vol 4 (2) ◽  
pp. 135-144 ◽  
Author(s):  
Sung-Jin Kim ◽  
Hyeon Lee ◽  
Ramesh Gupta
Keyword(s):  

2020 ◽  
Vol 237 (1) ◽  
pp. 105-118
Author(s):  
Gessiane Pereira da Silva ◽  
Frederico Ozanan Barros Monteiro ◽  
Thyago Habner de Souza Pereira ◽  
Sandy Estefany Rodrigues de Matos ◽  
Rafael Santos de Andrade ◽  
...  
Keyword(s):  

PLoS Genetics ◽  
2010 ◽  
Vol 6 (8) ◽  
pp. e1001079 ◽  
Author(s):  
Cord Drögemüller ◽  
Jens Tetens ◽  
Snaevar Sigurdsson ◽  
Arcangelo Gentile ◽  
Stefania Testoni ◽  
...  

2021 ◽  
Vol 13 ◽  
pp. 1759720X2110069
Author(s):  
Rebecca J. Moon ◽  
Elizabeth M. Curtis ◽  
Stephen J. Woolford ◽  
Shanze Ashai ◽  
Cyrus Cooper ◽  
...  

Optimisation of skeletal mineralisation in childhood is important to reduce childhood fracture and the long-term risk of osteoporosis and fracture in later life. One approach to achieving this is antenatal vitamin D supplementation. The Maternal Vitamin D Osteoporosis Study is a randomised placebo-controlled trial, the aim of which was to assess the effect of antenatal vitamin D supplementation (1000 IU/day cholecalciferol) on offspring bone mass at birth. The study has since extended the follow up into childhood and diversified to assess demographic, lifestyle and genetic factors that determine the biochemical response to antenatal vitamin D supplementation, and to understand the mechanisms underpinning the effects of vitamin D supplementation on offspring bone development, including epigenetics. The demonstration of positive effects of maternal pregnancy vitamin D supplementation on offspring bone development and the delineation of underlying biological mechanisms inform clinical care and future public-health policies.


2021 ◽  
Vol 22 (14) ◽  
pp. 7253
Author(s):  
Georgiana Neag ◽  
Melissa Finlay ◽  
Amy J. Naylor

Interaction between endothelial cells and osteoblasts is essential for bone development and homeostasis. This process is mediated in large part by osteoblast angiotropism, the migration of osteoblasts alongside blood vessels, which is crucial for the homing of osteoblasts to sites of bone formation during embryogenesis and in mature bones during remodeling and repair. Specialized bone endothelial cells that form “type H” capillaries have emerged as key interaction partners of osteoblasts, regulating osteoblast differentiation and maturation and ensuring their migration towards newly forming trabecular bone areas. Recent revolutions in high-resolution imaging methodologies for bone as well as single cell and RNA sequencing technologies have enabled the identification of some of the signaling pathways and molecular interactions that underpin this regulatory relationship. Similarly, the intercellular cross talk between endothelial cells and entombed osteocytes that is essential for bone formation, repair, and maintenance are beginning to be uncovered. This is a relatively new area of research that has, until recently, been hampered by a lack of appropriate analysis tools. Now that these tools are available, greater understanding of the molecular relationships between these key cell types is expected to facilitate identification of new drug targets for diseases of bone formation and remodeling.


Sign in / Sign up

Export Citation Format

Share Document