scholarly journals Studies on antiviral agents. III. Synthesis and in vitro antiviral activity of 1-N-higher-acyl-3"-N-functionalized acylkanamycin A derivatives.

1985 ◽  
Vol 38 (12) ◽  
pp. 1719-1737 ◽  
Author(s):  
KEIJI MATSUDA ◽  
NOBUYOSHI YASUDA ◽  
HIDEO TSUTSUMI ◽  
TAKAO TAKAYA
2021 ◽  
Vol 6 (1) ◽  
pp. 55-59
Author(s):  
M. A. Khasnatinov ◽  
T. G. Gornostai ◽  
I. S. Solovarov ◽  
M. S. Polyakova ◽  
G. A. Danchinova ◽  
...  

Background. Tick-borne encephalitis virus is dangerous and widespread pathogen that is transmitted to humans through the bites of hard ticks. Wild fungi, such as xylotrophic basidiomycetes, are widely used in traditional medicine to treat the infectious diseases and are promising natural sources of new antiviral agents. It was previously shown that aqueous extracts from the mycelium of the Inonotus rheades (Pers.) P. Karst. (1882) fungus exhibit significant antiviral activity against tick-borne encephalitis virus, however, the mechanisms of this activity remain unclear.Aim. To analyze the relationship between the virucidal properties of I. rheades extract and the substrate on which the cultivation was carried out.Materials and methods. The mycelium was grown either in a standard liquid medium with wort or on wooden disks from birch. Extracts of water-soluble polysaccharides were prepared from both mycelium samples. The concentration of infectious tick-borne encephalitis virus was determined using the method of titration of plaque-forming components (PFU). Approximately 30 000 PFU of tick-borne encephalitis virus was mixed with an equal volume of corresponding I. rheades extract at concentration of 8 mg/mL and incubated for 30 min at 37 °C. Afterwards, the residual infectivity of tick-borne encephalitis virus was determined using the identical virus sample incubated with sterile water as a reference.Results. It was found that treatment of tick-borne encephalitis virus with extracts from I. rheades mycelium resulted in inhibition of the infectivity of the virus in the cell culture. However, the same strain of I. rheades, grown on medium with wort, did not exhibit antiviral properties.Conclusions. Virucidal substances are likely to be not the main metabolites of the mycelium of I. rheades, but are rather metabolized wood polysaccharides. Further research is needed to more accurately identify the active ingredients and assess their antiviral activity.


2021 ◽  
Vol 8 ◽  
Author(s):  
Manuel Gómez-García ◽  
Héctor Puente ◽  
Héctor Argüello ◽  
Óscar Mencía-Ares ◽  
Pedro Rubio ◽  
...  

Organic acid and essential oils (EOs), well-known antimicrobials, could also possess antiviral activity, a characteristic which has not been completely addressed up to now. In this study, the effect of two organic acids (formic acid and sodium salt of coconut fatty acid distillates) and two single EO compounds (thymol and cinnamaldehye) was evaluated against porcine epidemic diarrhea virus (PEDV). The concentration used for each compound was established by cytotoxicity assays in Vero cells. The antiviral activity was then evaluated at three multiplicities of infection (MOIs) through visual cytopathic effect (CPE) evaluation and an alamarBlue assay as well as real-time reverse-transcription PCR (RT-qPCR) and viral titration of cell supernatants. Formic acid at at a dose of 1,200 ppm was the only compound which showed antiviral activity, with a weak reduction of CPE caused by PEDV. Through the alamarBlue fluorescence assay, we showed a significant anti-CPE effect of formic acid which could not be observed by using an inverted optical microscope. RT-qPCR and infectivity analysis also showed that formic acid significantly reduced viral RNA and viral titers in a PEDV MOI-dependent manner. Our results suggest that the antiviral activity of formic acid could be associated to its inhibitory effect on viral replication. Further studies are required to explore the anti-PEDV activity of formic acid under field conditions alone or together with other antiviral agents.


2010 ◽  
Vol 5 (12) ◽  
pp. 1934578X1000501 ◽  
Author(s):  
Keivan Zandi ◽  
Elissa Ramedani ◽  
Khosro Mohammadi ◽  
Saeed Tajbakhsh ◽  
Iman Deilami ◽  
...  

Antiviral drug resistance is one of the most common problems in medicine, and, therefore, finding new antiviral agents, especially from natural resources, seems to be necessary. This study was designed to assay the antiviral activity of curcumin and its new derivatives like gallium-curcumin and Cu-curcumin on replication of HSV-1 in cell culture. The research was performed as an in vitro study in which the antiviral activity of different concentrations of three substances including curcumin, Gallium-curcumin and Cu-curcumin were tested on HSV-1. The cytotoxicity of the tested compounds was also evaluated on the Vero cell line. The CC50 values for curcumin, gallium-curcumin and Cu-curcumin were 484.2 μg/mL, 255.8 μg/mL and 326.6 μg/mL, respectively, and the respective IC50 values 33.0 μg/mL, 13.9 μg/mL and 23.1 μg/mL. The calculated SI values were 14.6, 18.4 and 14.1, respectively. The results showed that curcumin and its new derivatives have remarkable antiviral effects on HSV-1 in cell culture.


1987 ◽  
Vol 40 (6) ◽  
pp. 843-854 ◽  
Author(s):  
KEIJI MATSUDA ◽  
NOBUYOSHI YASUDA ◽  
HIDEO TSUTSUMI ◽  
TAKAO TAKAYA

Author(s):  
Seyedeh Roya Alizadeh ◽  
Mohammad Ali Ebrahimzadeh

: Heterocyclic compounds play a critical role in medicinal chemistry and many available drugs contain heterocyclic rings. A six-membered heterocyclic compound pyridine showed various applications that acts as an important solvent, reagent, and precursor in agrochemicals and pharmaceuticals. Due to the increase of drug resistance, there is an obvious medical need to develop new antiviral agents. Various derivatives of pyridine scaffold display abroad biological activities such as anti-microbial, anti-viral, antioxidant, anti-diabetic, anti-cancer, anti-malaria, analgesic and anti-inflammatory activities, psychopharmacological antagonistic, anti-amoebic agents, and anti-thrombic activity. Due to the high importance of pyridine derivatives, in the present review, we tried to collect and classify many pyridine derivatives based on their structures from 2000 to 2020. Pyridine derivatives were classified into two general categories including pyridine containing heterocycles and pyridine fused rings. Structure-activity relationship (SAR) and the action mechanism of derivatives were also investigated. According to the recent studies, these derivatives exhibited good antiviral activity against different types of viruses such as the human immunodeficiency viruses (HIV), the hepatitis C virus (HCV), the hepatitis B virus (HBV), Respiratory syncytial virus (RSV), and Cytomegalovirus (CMV). These derivatives inhibited viral application with different action mechanism such as RT inhibition, polymerase inhibition, Inhibition of RNase H activity, inhibition of maturation, inhibition of the viral thymidine kinase, AAK1 (Adaptor-Associated Kinase 1) inhibition, GAK (Cyclin G-associated kinase) inhibition, inhibition of post-integrational event, inhibition of HDAC6, CCR5 antagonistic activity, DNA and RNA replication inhibition, gene expression inhibition, cellular NF-jB signaling pathway and neuraminidase (NA) inhibition, protein synthesis inhibition, and generally inhibition of viral replication cycle. This paper summarily expressed the past and present results about the discovery of novel lead compounds with good antiviral activity. Studies exhibited that almost all of the evaluations were performed by way of in vitro testing and is necessary to investigate in vivo and clinical testing for having better evaluations in the future. We believe that pyridine derivatives can be used as promising antiviral agents and needs to perform more broad investigations in this field.


2020 ◽  
Vol 8 (5) ◽  
pp. 703
Author(s):  
Matteo Biolatti ◽  
Marco Blangetti ◽  
Giulia D’Arrigo ◽  
Francesca Spyrakis ◽  
Paola Cappello ◽  
...  

The human cytomegalovirus (HCMV) is a widespread pathogen and is associated with severe diseases in immunocompromised individuals. Moreover, HCMV infection is the most frequent cause of congenital malformation in developed countries. Although nucleoside analogs have been successfully employed against HCMV, their use is hampered by the occurrence of serious side effects. There is thus an urgent clinical need for less toxic, but highly effective, antiviral drugs. Strigolactones (SLs) are a novel class of plant hormones with a multifaceted activity. While their role in plant-related fields has been extensively explored, their effects on human cells and their potential applications in medicine are far from being fully exploited. In particular, their antiviral activity has never been investigated. In the present study, a panel of SL analogs has been assessed for antiviral activity against HCMV. We demonstrate that TH-EGO and EDOT-EGO significantly inhibit HCMV replication in vitro, impairing late protein expression. Moreover, we show that the SL-dependent induction of apoptosis in HCMV-infected cells is a contributing mechanism to SL antiviral properties. Overall, our results indicate that SLs may be a promising alternative to nucleoside analogs for the treatment of HCMV infections.


1985 ◽  
Vol 38 (4) ◽  
pp. 547-549 ◽  
Author(s):  
KEIJI MATSUDA ◽  
NOBUYOSHI YASUDA ◽  
HIDEO TSUTSUMI ◽  
TAKAO TAKAYA

2020 ◽  
Vol 14 (2) ◽  
Author(s):  
A. M. Demchenko ◽  
O. V. Moskalenko ◽  
V. V. Sukhoveev ◽  
O. I. Barchyna ◽  
Yu. A. Fedchenkova

Nowadays, control of viral diseases becomes especially relevant, considering spreading of influenza A (subtype H1N1) in this season and appearance of new coronavirus SARS-CoV-2, which caused their epidemic spreading in the world. This is why development and introduction of new highly effective antiviral drugs are a relevant direction of pharmaceutical chemistry. The aim of research is to synthesize the derivatives of (4,6-bis-amino[1,3,5]triazin-2-yl-sulphanyl)-Naryl-acetamide and to study the antiviral activity for FluA (H1N1) virus California/07/2009 at primary pharmacological screening stage. The investigated compounds – (4,6-bis-amino[1,3,5]triazin-2-yl-sulphanyl)-N-aryl-acetamide derivatives, were synthesized on the basis of 4,6-bis-ethylamino[1, 3,5]triazin-2-tiol. The antiviral activity of (4,6-bis-amino[1,3,5]triazin-2-yl-sulphanyl)-N-(2,4,6-trichlorphenyl)-acetamide against the virus FluA (H1N1) California/07/2009 was evaluated on MDCK cell culture test in vitro. It has been shown that the test substance exhibits high antiviral activity against the influenza A virus H1N1 California/ 07/2009 with effective concentration of EC50 0,6 μg/ml and the selectivity index SI > 170 (for Ribavirin SI > 160 and Amizona SI > 2,1). The data obtained substantiate the expediency of further study of derivatives of (4,6-diamino[1,3,5] triazine-2-yl-sulphanyl)-N-aryl-acetamide as potential antiviral agents.


2020 ◽  
Author(s):  
Juhee Son ◽  
Shimeng Huang ◽  
Qiru Zeng ◽  
Traci L. Bricker ◽  
James Brett Case ◽  
...  

AbstractPathogenic coronaviruses represent a major threat to global public health. Here, using a recombinant reporter virus-based compound screening approach, we identified several small-molecule inhibitors that potently block the replication of the newly emerged severe acute respiratory syndrome virus 2 (SARS-CoV-2). Two compounds, nitazoxanide and JIB-04 inhibited SARS-CoV-2 replication in Vero E6 cells with an EC50 of 4.90 μM and 0.69 μM, respectively, with specificity indices of greater than 150. Both inhibitors had in vitro antiviral activity in multiple cell types against some DNA and RNA viruses, including porcine transmissible gastroenteritis virus. In an in vivo porcine model of coronavirus infection, administration of JIB-04 reduced virus infection and associated tissue pathology, which resulted in improved body weight gain and survival. These results highlight the potential utility of nitazoxanide and JIB-04 as antiviral agents against SARS-CoV-2 and other viral pathogens.


Sign in / Sign up

Export Citation Format

Share Document