scholarly journals Functional Genomics, Metabolic Engineering and Mutagenesis Study of Lactic Acid Bacterial Strains in Traditional Food Fermentation, Human Health and Their Potential Applications

2020 ◽  
Foods ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2639
Author(s):  
Vincenzo Castellone ◽  
Elena Bancalari ◽  
Josep Rubert ◽  
Monica Gatti ◽  
Erasmo Neviani ◽  
...  

Lactic acid bacteria (LAB) are involved in producing a considerable number of fermented products consumed worldwide. Many of those LAB fermented foods are recognized as beneficial for human health due to probiotic LAB or their metabolites produced during food fermentation or after food digestion. In this review, we aim to gather and discuss available information on the health-related effects of LAB-fermented foods. In particular, we focused on the most widely consumed LAB-fermented foods such as yoghurt, kefir, cheese, and plant-based products such as sauerkrauts and kimchi.


1993 ◽  
Vol 7 (3) ◽  
pp. 189-205 ◽  
Author(s):  
Dick J.C. van den Berg ◽  
Annelies Smits ◽  
Bruno Pot ◽  
Aat M. Ledeboer ◽  
Karel Kersters ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 963
Author(s):  
Jon Kepa Izaguirre ◽  
Leire Barañano ◽  
Sonia Castañón ◽  
Itziar Alkorta ◽  
Luis M. Quirós ◽  
...  

Soybeans and soy-based products contain isoflavones which can be used for nutraceutical and medical applications. In soybeans and in unfermented soy foods, isoflavones are normally present as glycosides. Isoflavone glycosides can be enzymatically converted to isoflavone aglycones, thus releasing the sugar molecule. The effective absorption of isoflavones in humans requires the bioconversion of isoflavone glycosides to isoflavone aglycones through the activity of the enzyme β-glucosidase. The objective was to assess the capacity of 42 bacterial strains (belonging to Lactobacillus, Streptococcus and Enterococcus) to produce β-glucosidase activity. The strain that showed the highest β-glucosidase activity (Lactobacillus plantarum 128/2) was then used for the optimization of the bioconversion of genistin and daidzin present in commercial soymilk to their aglycone forms genistein and daidzein. The contribution of process parameters (temperature, inoculum size, time) to the efficiency of such bioactivation was tested. Lactobacillus plantarum 128/2 was able to completely bioactivate soymilk isoflavones under the following conditions: 25 °C temperature, 2% inoculum size and 48 h process time. These results confirm the suitability of lactic acid bacteria for the bioactivation of isoflavones present in soymilk and provide an interesting candidate (L. plantarum 182/2) for food industries to perform this transformation.


Fibers ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 50
Author(s):  
Warren J. Grigsby ◽  
Arpit Puri ◽  
Marc Gaugler ◽  
Jan Lüedtke ◽  
Andreas Krause

This study reports on the use of poly(lactic acid) (PLA) as a renewable thermoplastic adhesive for laminated panels using birch, spruce, and pine veneers. Consolidated panels were prepared from veneer and PLA foils by hot-pressing from 140 to 180 °C to achieve minimum bondline temperatures. Evaluation of panel properties revealed that the PLA-bonded panels met minimum tensile strength and internal bond strength performance criteria. However, the adhesion interface which developed within individual bondlines varied with distinctions between hardwood and softwood species and PLA grades. Birch samples developed greater bondline strength with a higher pressing temperature using semi-crystalline PLA, whereas higher temperatures produced a poorer performance with the use of amorphous PLA. Panels formed with spruce or pine veneers had lower bondline performance and were also similarly distinguished by their pressing temperature and PLA grade. Furthermore, the potential for PLA-bonded laminated panels was demonstrated by cold water soak testing. Samples exhibiting relatively greater bondline adhesion had wet tensile strength values comparable to those tested in dry state. Our study outcomes suggest the potential for PLA bonding of veneers and panel overlays with the added benefits of being renewable and a no added formaldehyde system.


2003 ◽  
Vol 69 (2) ◽  
pp. 1093-1099 ◽  
Author(s):  
Frédéric Leroy ◽  
Luc De Vuyst

ABSTRACT The use of bacteriocin-producing lactic acid bacteria for improved food fermentation processes seems promising. However, lack of fundamental knowledge about the functionality of bacteriocin-producing strains under food fermentation conditions hampers their industrial use. Predictive microbiology or a mathematical estimation of microbial behavior in food ecosystems may help to overcome this problem. In this study, a combined model was developed that was able to estimate, from a given initial situation of temperature, pH, and nutrient availability, the growth and self-inhibition dynamics of a bacteriocin-producing Lactobacillus sakei CTC 494 culture in (modified) MRS broth. Moreover, the drop in pH induced by lactic acid production and the bacteriocin activity toward Listeria as an indicator organism were modeled. Self-inhibition was due to the depletion of nutrients as well as to the production of lactic acid. Lactic acid production resulted in a pH drop, an accumulation of toxic undissociated lactic acid molecules, and a shift in the dissociation degree of the growth-inhibiting buffer components. The model was validated experimentally.


2017 ◽  
Vol 111 ◽  
pp. 1-9 ◽  
Author(s):  
John R. Lamont ◽  
Olivia Wilkins ◽  
Margaret Bywater-Ekegärd ◽  
Donald L. Smith

2019 ◽  
pp. 151-174
Author(s):  
Fergus W. J. Collins ◽  
Mary C. Rea ◽  
Colin Hill ◽  
R. Paul Ross

Author(s):  
Mital R. Kathiriya ◽  
J. B. Prajapati ◽  
Yogesh V. Vekariya

2021 ◽  
Vol 11 (21) ◽  
pp. 10385
Author(s):  
Gautham Giri ◽  
Yaser Maddahi ◽  
Kourosh Zareinia

Robotics is a rapidly growing field, and the innovative idea to scale down the size of robots to the nanometer level has paved a new way of treating human health. Nanorobots have become the focus of many researchers aiming to explore their many potential applications in medicine. This paper focuses on manufacturing techniques involved in the fabrication of nanorobots and their associated challenges in terms of design architecture, sensors, actuators, powering, navigation, data transmission, followed by challenges in applications. In addition, an overview of various nanorobotic systems addresses different architectures of a nanorobot. Moreover, multiple medical applications, such as oncology, drug delivery, and surgery, are reviewed and summarized.


Sign in / Sign up

Export Citation Format

Share Document