Collecting and Caring for Tree-Ring Samples in the Southwest

2015 ◽  
Vol 3 (4) ◽  
pp. 397-406 ◽  
Author(s):  
Ronald H. Towner

AbstractDendrochronology is the most precise and accurate dating technique available to archaeologists, with resolution to the year and sometimes season. As biological specimens from human-produced contexts, dendroarchaeological samples inherently contain three kinds of information: chronological, behavioral, and environmental. The purpose of this short article is to educate archaeologists on how to avoid degrading any of these three types of information through improper sample selection, collection, preparation, or transportation techniques. Dendroarchaeology is not without limitations. First and foremost, it is dependent on the behaviors of people who built structures, made artifacts, and burned wood for fuel. If past people did not use wood, or used undateable tree species, dendrochronology will simply not be useful. In some cases, people used dateable species, but their selection criteria did not meet one of the four basic criteria necessary for successful dating. The second most important factor in successful tree-ring dating of archaeological materials is the behavior of archaeologists. Finally, preservation plays an important role in successful dating and the nature of the derived dates, but the paucity of long-lived old trees and degradation of “legacy” wood on the ground have hampered the development of millennia-long chronologies in more mesic areas.

2021 ◽  
Author(s):  
Kaja Rola ◽  
Vítězslav Plášek ◽  
Katarzyna Rożek ◽  
Szymon Zubek

Abstract Aim Overstorey tree species influence both soil properties and microclimate conditions in the forest floor, which in turn can induce changes in ground bryophyte communities. The aim of the study was to investigate the effect of tree species identity and the most important habitat factors influencing understorey bryophytes. Methods We assessed the effect of 14 tree species and related habitat parameters, including soil parameters, vascular plant presence and light intensity on bryophytes in monospecific plots covered by nearly fifty-year-old trees in the Siemianice Experimental Forest (Poland). Results The canopy tree species determined bryophyte species richness and cover. The strongest differences were observed between plots with deciduous and coniferous trees. Soils with a more acidic pH and lower content of macronutrients supported larger bryophyte coverage. We also found a positive correlations between vascular plants and availability of light as well as bryophyte species richness. Conclusion Tree species identity and differences in habitat conditions in the forest floor lead to changes of ground bryophyte richness, cover and species composition. Consequently, the changes in the dominant tree species in the stand may result in significant repercussions on ground bryophyte communities. We indicated that the introduction of alien tree species, i.e. Quercus rubra, has an adverse effect on bryophyte communities and suggested that the selection of tree species that contribute to the community consistent with the potential natural vegetation is highly beneficial for maintaining ground bryophyte biodiversity.


Atmosphere ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 644 ◽  
Author(s):  
Pablo Casas-Gómez ◽  
Raúl Sánchez-Salguero ◽  
Pedro Ribera ◽  
Juan C. Linares

Extreme drought events are becoming increasingly frequent and extended, particularly in Mediterranean drought-prone regions. In this sense, atmospheric oscillations patterns, such as those represented by the North Atlantic Oscillation (NAO) index and the Westerly Index (WI) have been widely proven as reliable proxies of drought trends. Here, we used the Standardized Precipitation–Evapotranspiration Index (SPEI), as a reliable indicator of drought, to investigate the drought sensitivity of tree-ring width data (TRW) from several long-lived tree species (Abies borisii-regis, Abies cilicica, Abies pinsapo, Cedrus atlantica, Cedrus libanii, Pinus nigra, Pinus heldreichii). NAO and WI relations with TRW were also investigated in order to identify potential non-stationary responses among those drought proxies. Our temporal and spatial analyses support contrasting Mediterranean dipole patterns regarding the drought sensitivity of tree growth for each tree species. The spatial assessment of NAO and WI relationships regarding SPEI and TRW showed on average stronger correlations westward with non-stationary correlations between annual WI index and TRW in all species. The results indicate that the drought variability and the inferred drought-sensitive trees species (e.g., C. atlantica) are related to the NAO and the WI, showing that TRW is a feasible proxy to long-term reconstructions of Westerly Index (WI) variability in the Western Mediterranean region. Spatial variability of drought severity suggests a complex association between NAO and WI, likely modulated by an east–west Mediterranean climate dipole.


2015 ◽  
Vol 166 (6) ◽  
pp. 389-398 ◽  
Author(s):  
Brigitte Rohner ◽  
Esther Thürig

Development of climate-dependent growth functions for the scenario model “Massimo” Tree growth is substantially influenced by climatic factors. In the face of climate change, climate effects should therefore be included in estimations of Switzerland's future forest productivity. In order to include climate effects in the growth functions of the “Massimo” model, which is typically applied to project forest resources in Switzerland, we statistically modelled climate effects on tree growth representatively for Switzerland by simultaneously considering further growth-influencing factors. First, we used tree ring data to evaluate how climate variables should be defined. This analyses showed that for modelling multi-year tree growth we should use averages of whole-year variables. Second, we fitted nonlinear mixed-effects models separately for the main tree species to individual-tree growth data from the Swiss National Forest Inventory. In these models, we combined climate variables defined according to the results of the tree ring study with various further variables that characterize sites, stands and individual trees. The quantified effects were generally plausible and explained convincingly the physiological differences between the species. The statistical growth models for the main tree species will now be included in the forest scenario model “Massimo”. This will allow for founded analyses of scenarios which assume changing climatic conditions.


Diversity ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 451
Author(s):  
Ana M. Cárdenas ◽  
Patricia Gallardo ◽  
Ángela Salido ◽  
José Márquez

This study assesses the effects of environmental traits and landscape management on the biodiversity of saproxylic beetles from “dehesas” located in Sierra Morena Mountains (Córdoba, Southern Iberian Peninsula). The dehesa is an open savanna-like landscape with mature/old trees scattered on a pasture cover where both living and dead wood are of great importance for the maintenance of macroinvertebrate fauna. The study was carried out in five plots, with different environmental features and management. A total of 137 branches belonging to the four main tree species present in the area were collected, classified, and kept under four different thermal conditions. From January to June 2019, the adult emergences were followed. A total of 466 saproxylic specimens of 31 species were obtained, 5 of them included in red lists of protected fauna. Two Bostrichidae species (Lichenophanes numida Lesne and Scobicia pustulata Fab.) and two Cerambycidae (Chlorophorus ruficornis Oliv. and Trichoferus fasciculatus Faldermann) are included in the “European Red List of Saproxylic Beetles”; and the Clerid Tillus ibericus Bahillo de la Puebla, López–Colón and García–Paris, is included in the “Red Book of Invertebrate of Andalucía”. Differences were observed regarding the diversity and abundance among the plots and among the tree species from which the beetles emerged. Simple regression analyses revealed negative relationships between tree density/Buprestidae, livestock/Bostrichidae, and land use/Cerambycidae. Multivariant logistic regression analysis did not find significant relationships among environmental traits and saproxylic diversity. Results confirmed that dry wood was a main resource for the maintenance dehesas’ biodiversity because it constitutes an ecological niche exploited by a significant set of saproxylic beetles belonging to the Bostrichidae, Buprestidae, and Cerambycidae families, in addition to other guilds of species, mainly Carabidae and Cleridae, which feed on the above-mentioned groups. Our results also support that increasing environmental temperature accelerates the development of Buprestidae, but this effect was not evident for the Bostrichidae species.


Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 1002
Author(s):  
Rafael M. Navarro-Cerrillo ◽  
Antonio Gazol ◽  
Carlos Rodríguez-Vallejo ◽  
Rubén D. Manzanedo ◽  
Guillermo Palacios-Rodríguez ◽  
...  

Systematic forest networks of health monitoring have been established to follow changes in tree vigor and mortality. These networks often lack long-term growth data, but they could be complemented with tree ring data, since both defoliation and radial growth are proxies of changes in tree vigor. For instance, a severe water shortage should reduce growth and increase tree defoliation in drought-prone areas. However, the effects of climatic stress and drought on growth and defoliation could also depend on tree age. To address these issues, we compared growth and defoliation data with recent climate variability and drought severity in Abies pinsapo old and young trees sampled in Southern Spain, where a systematic health network (Andalucía Permanent Plot Network) was established. Our aims were: (i) to assess the growth sensitivity of old and young A. pinsapo trees and (ii) to test if relative changes in radial growth were related with recent defoliation, for instance, after severe droughts. We also computed the resilience indices to quantify how old and young trees recovered growth after recent droughts. Wet-cool conditions during the prior autumn and the current early summer improved the growth of old trees, whereas late-spring wet conditions enhanced the growth of young trees. Old trees were more sensitive to wet and sunny conditions in the early summer than young trees. Old and young trees were more responsive to the Standardized Precipitation-Evapotranspiration Index drought index of June–July and July–August calculated at short (one–three months) and mid (three–six months) time scales, respectively. Old trees presented a higher resistance to a severe drought in 1995 than young trees. A positive association was found between stand defoliation and relative growth. Combining monitoring and tree ring networks is useful for the detection of early warning signals of dieback in similar drought-prone forests.


IAWA Journal ◽  
2009 ◽  
Vol 30 (4) ◽  
pp. 379-394 ◽  
Author(s):  
Xuemei Shao ◽  
Shuzhi Wang ◽  
Haifeng Zhu ◽  
Yan Xu ◽  
Eryuan Liang ◽  
...  

This article documents the development of a precisely dated and wellreplicated long regional tree-ring width dating chronology for Qilian juniper (Juniperus przewalskii Kom.) from the northeastern Qinghai- Tibetan Plateau. It involves specimens from 22 archeological sites, 24 living tree sites, and 5 standing snags sites in the eastern and northeastern Qaidam Basin, northwestern China. The specimens were cross-dated successfully among different groups of samples and among different sites. Based on a total of 1438 series from 713 trees, the chronology covers 3585 years and is the longest chronology by far in China. Comparisons with chronologies of the same tree species about 200 km apart suggest that this chronology can serve for dating purposes in a region larger than the study area. This study demonstrates the great potential of Qilian juniper for dendrochronological research.


1993 ◽  
Vol 23 (5) ◽  
pp. 846-853 ◽  
Author(s):  
D.C. West ◽  
T.W. Doyle ◽  
M.L. Tharp ◽  
J.J. Beauchamp ◽  
W.J. Platt ◽  
...  

Longleaf pine (Pinuspalustris Mill.) tree-ring data were obtained from an old-growth stand located in Thomas County, Georgia. The tree-ring chronology from the pine stand is composed of a collection of cores extracted from 26 trees ranging in age from approximately 100 to 400 years. These cores were prepared, dated, and measured, and the resulting data were examined with dendrochronological and statistical techniques. Beginning in approximately 1950 and continuing to the present, annual increments of all age classes examined in this study have increased, resulting in an average annual ring increment approximately 40% greater in 1987 than in 1950. When compared with expected annual increment, the increase for 100- to 150-year-old trees is approximately 45%, while the increase for 200- to 400-year-old trees is approximately 35%. In terms of stand-level aboveground biomass accumulation, the increased growth has resulted in approximately 5% more biomass than expected. The increased growth cannot be explained by disturbance; stand history; or trends in precipitation, temperature, or Palmer drought severity index over the last 57 years. Increased atmospheric CO2 is a possible explanation for initiation of the observed trend, while SOx and NOx may be augmenting continuation of this phenomenon.


2020 ◽  
Vol 93 (5) ◽  
pp. 675-684
Author(s):  
Nicolas Latte ◽  
Philippe Taverniers ◽  
Tanguy de Jaegere ◽  
Hugues Claessens

Abstract To increase forest resilience to global change, forest managers are often directing forest stands towards a broader diversity of tree species. The small-leaved lime (Tilia cordata Mill.), a rare and scattered species in northwestern Europe, is a promising candidate for this purpose. Its life traits suggest a high resilience to climate change and a favourable impact on forest ecosystem services. This study used a dendroecological approach to assess how lime tree radial growth had responded to the past climatic change. First, 120 lime trees from nine sites were selected in southern Belgium based on criteria adapted to the rareness of the species. Chronology quality was assessed and resulting tree-ring series were validated at site and region levels. Second, a range of dendrochronological methods was used to analyze the changes over time in the variability and long-term trends of lime tree growth and their relation to climate during the period 1955–2016. Last, behaviour of lime trees was compared with that of beech from the same region and time period. For this purpose, the same methodology was applied to an additional beech tree-ring dataset (149 trees from 13 sites). Beech is the climax tree species of the region, but is known to be drought-sensitive and has shown weaknesses in the current climate. The quality of our tree-ring series attests that dendroecological investigation using rare and scattered species is possible, opening the way to further analysis on other such lesser-known forest tree species. The analysis showed that the small-leaved lime had been resilient to the past climatic change in multiple ways. Lime growth increased during the preceding decades despite an increased frequency and intensity of stressful climatic events. Lime growth quickly recovered in the years following the stresses. The growth–climate relationships were either stable over time or had a positive evolution. The behaviour of lime contrasted strongly with that of beech. Lime performed better than beech in every analysis. Small-leaved lime is thus a serious candidate for addressing climate change challenges in the region. It should be considered by forest managers planning to improve the sustainability and resilience of their forests, in particular in vulnerable beech stands.


Sign in / Sign up

Export Citation Format

Share Document