Paleoecology of an Early Holocene Wetland on the Canadian Prairies

2005 ◽  
Vol 57 (2-3) ◽  
pp. 139-149 ◽  
Author(s):  
Matthew Boyd

AbstractA plant macrofossil record from the glacial Lake Hind basin is used to reconstruct early postglacial wetland plant succession and paleohydrology. Between >10.6 and 9.1 ka BP, there are four plant assemblage zones: (1) an early (>10.6 ka BP) zone dominated by Cyperaceae and aquatics; (2) a subsequent zone (~10.6-10.1 ka BP) with emergents (Menyanthes trifoliata,Potentilla palustris,Scirpus validus) and fewer aquatic plants; (3) an interval between ~10.1 and 9.8 ka BP dominated byDrepanocladus aduncus; and (4) a zone between ~9.8 and 9.1 ka BP withMenyanthes trifoliataandEquisetum.These data indicate a gradual decline in water depth between 10.6 and 10.1 ka BP due to deepening of one or more outlets of glacial Lake Hind. From ~10.6 to 9.1 ka BP, the importance ofMenyanthesrecords pronounced, seasonal, flooding. Furthermore, lack of evidence for complete drawdown and terrestrialization in the basin – despite local and regional evidence for postglacial warming – indicates that this wetland was minimally impacted by climate change up to at least 9.1 ka BP. Persistence of very wet conditions locally is consistent with recent results from south-central Saskatchewan, and may be due to release of meltwater from stagnant ice. However, frequent low-energy flooding of the basin by the Souris River is more plausible. In general, the apparent insensitivity of aquatic habitats to abrupt climate change in some locales on the Canadian Prairies demonstrates the potential long-term mitigating effects of local hydrological factors.

2021 ◽  
Vol 2 ◽  
Author(s):  
Estelle Levetin

Climate change is having a significant effect on many allergenic plants resulting in increased pollen production and shifts in plant phenology. Although these effects have been well-studied in some areas of the world, few studies have focused on long-term changes in allergenic pollen in the South Central United States. This study examined airborne pollen, temperature, and precipitation in Tulsa, Oklahoma over 25 to 34 years. Pollen was monitored with a Hirst-type spore trap on the roof of a building at the University of Tulsa and meteorology data were obtained from the National Weather Service. Changes in total pollen intensity were examined along with detailed analyses of the eight most abundant pollen types in the Tulsa atmosphere. In addition to pollen intensity, changes in pollen season start date, end date, peak date and season duration were also analyzed. Results show a trend to increasing temperatures with a significant increase in annual maximum temperature. There was a non-significant trend toward increasing total pollen and a significant increase in tree pollen over time. Several individual taxa showed significant increases in pollen intensity over the study period including spring Cupressaceae and Quercus pollen, while Ambrosia pollen showed a significant decrease. Data from the current study also indicated that the pollen season started earlier for spring pollinating trees and Poaceae. Significant correlations with preseason temperature may explain the earlier pollen season start dates along with a trend toward increasing March temperatures. More research is needed to understand the global impact of climate change on allergenic species, especially from other regions that have not been studied.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Zhaoqin Li ◽  
Shusen Wang ◽  
Junhua Li

AbstractAssessing the status and trend of potential evaporation (PE) is essential for investigating the climate change impact on the terrestrial water cycle. Despite recent advances, evaluating climate change impacts on PE using pan evaporation (Epan) data in cold regions is hindered by the unavailability of Epan measurements in cold seasons due to the freezing of water and sparse spatial distribution of sites. This study generated long-term PE datasets in Canada for 1979–2016 by integrating the dynamic evolutions of water–ice–snow processes into estimation in the Ecological Assimilation of Land and Climate Observations (EALCO) model. The datasets were compared with Epan before the spatial variations and trends were analyzed. Results show that EALCO PE and Epan measurements demonstrate similar seasonal variations and trends in warm seasons in most areas. Annual PE in Canada varied from 100 mm in the Northern Arctic to approximately 1000 mm in southern Canadian Prairies, southern Ontario, and East Coast, with about 600 mm for the entire landmass. Annual PE shows an increasing trend at a rate of 1.5–4 mm/year in the Northern Arctic, East, and West Canada. The increase is primarily associated with the elevated air temperature and downward longwave and shortwave radiation, with some regions contributed by augmented wind speed. The increase of annual PE is mainly attributed to the augmentation of PE in warm seasons.


2004 ◽  
Vol 84 (4) ◽  
pp. 1085-1091 ◽  
Author(s):  
Herb Cutforth ◽  
EG (Ted) O’Brien ◽  
Jason Tuchelt ◽  
Rick Rickwood

The climate of the prairies has warmed over the past century, especially during late winter and early spring. Some regions of the prairies have warmed faster than others. Climate change has been documented to affect living systems in North America, such as promoting earlier phenological development and longer growing seasons. We examined weather records gathered at several long-term weather-recording sites across the agricultural regions of the Canadian prairies for evidence of trends in last spring frosts, first fall frosts, and frost-free durations. During the latter half of the 20th century, the trends were towards earlier last spring frost dates and towards longer frost-free seasons in the agricultural regions of the Canadian prairies. Across most of the prairies the trends towards later first fall frost dates were smaller and generally not significant. The largest changes have occurred in the central and northern agricultural regions of Alberta, whereas the least change occurred over much of southern Alberta and in southern Manitoba. Key words: Last spring and first fall frost dates, frost-free season, agroclimatic indices, climate change, Canadian prairies


2021 ◽  
Author(s):  
Allyson B. Bangerter ◽  
Eliana R. Heiser ◽  
Jay D. Carlisle ◽  
Robert A. Miller

ABSTRACT Weather is thought to influence raptor reproduction through effects on prey availability, condition of adults, and survival of nests and young; however, there are few long-term studies of the effects of weather on raptor reproduction. We investigated the effects of weather on Northern Goshawk (Accipiter gentilis; henceforth goshawk) breeding rate, productivity, and fledging date in south-central Idaho and northern Utah, USA. Using data from 42 territories where we found evidence of breeding attempts in ≥1 yr from 2011–2019, we analyzed breeding rates using 315 territory–season combinations, analyzed productivity for 134 breeding attempts, and analyzed fledging date for 118 breeding attempts. We examined 35 predictor variables from four categories: precipitation, temperature, wind, and snowpack. Of the variables we evaluated, April precipitation, previous year's April–July precipitation, April–May mean temperature, and March–May mean temperature were related to measures of goshawk reproduction. Greater April–July precipitation in the previous year and lower April precipitation in the current year were associated with higher breeding rates. Years with warmer average April–May temperatures were associated with increased goshawk productivity. Years with greater April–July precipitation during the previous year and lower mean March–May temperatures were associated with later fledging dates. Based on these relationships, we considered projected changes in weather in the northern Great Basin over the next 50 yr as a result of climate change (without directly accounting for habitat changes caused by climate change), and predicted that climate change will: (a) have no significant effect on goshawk breeding rate, (b) have a positive effect on goshawk productivity, and (c) cause a shift toward earlier goshawk breeding. Our results indicate that weather is significantly related to goshawk reproduction in the northern Great Basin, and we suggest that the relationship between raptor breeding and weather be further investigated to enable higher resolution predictions of how changes in the climate may influence their populations, particularly changes that may not have been captured by our study.


Author(s):  
Nguyen Thi Thuc An ◽  
Dau Kieu Ngoc Anh

The 2018 Nobel Economics Prize was awarded to two American economists - William D. Nordhaus and Paul M. Romer - who designed methods for better assessing environmental issues and technological advances on growth. This year’s Laureates, Nordhaus was the first person to create an intergrated model to assess interactions between society and nature and Romer laid the foundation for what is now called endogenous growth theory. According to the Swedish Royal Academy of Sciences, these two macroeconomists’ research have helped “significantly broaden the scope of economic analysis by constructing models that explain how the market economy interacts with nature and knowledge” which integrates climate change measures into long-term sustainable economic growth. Keywords Nobel in economics, William D. Nordhaus, Paul M. Romer, climate change, endogenous growth theory, economic growth References [1] Y Vân (2018), “Lý lịch 'khủng' của hai nhà khoa học vừa giành giải Nobel Kinh tế 2018”, Vietnambiz, đăng tải ngày 08/10/2018, https://vietnambiz.vn/ly-lich-khung-cua-hai-nha-khoa-hoc-vua-gianh-giai-nobel-kinh-te-2018-95776.html[2] Jonas O. Bergman, Rich Miller (2018), “Nordhaus, Romer Win Nobel for Thinking on Climate, Innovation”, đăng tải ngày 8/10/2018, https://www.bloomberg.com/news/articles/2018-10-08/nordhaus-romer-win-2018-nobel-prize-in-economic-sciences [3] Antonin Pottier (2018), “Giải Nobel” William Nordhaus có thật sự nghiêm túc?”, Nguyễn Đôn Phước dịch, đăng tải ngày 11/10/2018, http://www.phantichkinhte123.com/2018/10/giai-nobel-william-nordhaus-co-that-su.html[4] Thăng Điệp (2018), “Giải Nobel kinh tế 2018 về tay hai người Mỹ”, đăng tải ngày 8/10/2018, http://vneconomy.vn/giai-nobel-kinh-te-2018-ve-tay-hai-nguoi-my-20181008185809239.htm[5] Lars P. Syll (2018), “Cuối cùng - Paul Romer cũng có được giải thưởng Nobel”, Huỳnh Thiện Quốc Việt dịch, đăng tải ngày 14/10/2018, http://www.phantichkinhte123.com/2018/10/cuoi-cung-paul-romer-cung-co-uoc-giai.html[6] Phương Võ (2018), “Nobel Kinh tế 2018: Chạm tới bài toán khó của thời đại”, đăng tải ngày 9/10/2018, https://nld.com.vn/thoi-su-quoc-te/nobel-kinh-te-2018-cham-toi-bai-toan-kho-cua-thoi-dai-20181008221734228.htm[7] Đông Phong (2018), “Nobel Kinh tế cho giải pháp phát triển bền vững và phúc lợi người dân”, đăng tải ngày 8/10/2018, https://news.zing.vn/nobel-kinh-te-cho-giai-phap-phat-trien-ben-vung-va-phuc-loi-nguoi-dan-post882860.html[8] Thanh Trúc (2018), “Giải Nobel kinh tế 2018: Thay đổi tư duy về biến đổi khí hậu”, https://tusach.thuvienkhoahoc.com/wiki/Gi%E1%BA%A3i_Nobel_kinh_t%E1%BA%BF_2018:_Thay_%C4%91%E1%BB%95i_t%C6%B0_duy_v%E1%BB%81_bi%E1%BA%BFn_%C4%91%E1%BB%95i_kh%C3%AD_h%E1%BA%ADu[9] Cẩm Anh (2018), “Nobel kinh tế 2018: Lời giải cho tăng trưởng kinh tế bền vững”, đăng tải ngày 11/10/2018, http://enternews.vn/nobel-kinh-te-2018-loi-giai-cho-tang-truong-kinh-te-ben-vung-137600.html.


2019 ◽  
pp. 79-95
Author(s):  
N.E. Terentiev

Based on the latest data, paper investigates the dynamics of global climate change and its impact on economic growth in the long-term. The notion of climate risk is considered. The main directions of climate risk management policies are analyzed aimed, first, at reducing anthropogenic greenhouse gas emissions through technological innovation and structural economic shifts; secondly, at adaptation of population, territories and economic complexes to the irreparable effects of climate change. The problem of taking into account the phenomenon of climate change in the state economic policy is put in the context of the most urgent tasks of intensification of long-term socio-economic development and parrying strategic challenges to the development of Russia.


2021 ◽  
pp. 108602662110316
Author(s):  
Tiziana Russo-Spena ◽  
Nadia Di Paola ◽  
Aidan O’Driscoll

An effective climate change action involves the critical role that companies must play in assuring the long-term human and social well-being of future generations. In our study, we offer a more holistic, inclusive, both–and approach to the challenge of environmental innovation (EI) that uses a novel methodology to identify relevant configurations for firms engaging in a superior EI strategy. A conceptual framework is proposed that identifies six sets of driving characteristics of EI and two sets of beneficial outcomes, all inherently tensional. Our analysis utilizes a complementary rather than an oppositional point of view. A data set of 65 companies in the ICT value chain is analyzed via fuzzy-set comparative analysis (fsQCA) and a post-QCA procedure. The results reveal that achieving a superior EI strategy is possible in several scenarios. Specifically, after close examination, two main configuration groups emerge, referred to as technological environmental innovators and organizational environmental innovators.


Sign in / Sign up

Export Citation Format

Share Document