Design and Fabrication of Location Tracing Antenna for Container Transportation

Author(s):  
Sang-Won Kang
2021 ◽  
Vol 104 (3) ◽  
pp. 003685042110355
Author(s):  
Tomas Eglynas ◽  
Sergej Jakovlev ◽  
Valdas Jankunas ◽  
Rimantas Didziokas ◽  
Jolanta Januteniene ◽  
...  

Introduction: In the paper, we examine the energy consumption efficiency of specialized container diesel trucks engaged in container transportation at a seaport terminal. Objectives: Using the container terminal at Klaipėda in Lithuania as the background for the research, we produced an improved energy consumption model for measuring the theoretical energy consumption and regeneration of diesel trucks at the terminal and provide a comparative analysis. Methods: We created a mathematical model which describes the instantaneous energy consumption of the diesel trucks, taking into account their dynamic properties and the overall geometry of their routes—“Ship-Truck-Stack-Ship”—using the superposition principle. We investigated other critical parameters relevant to the model and provide a statistical evaluation of the transportation process using data from a case study of Klaipėda port, where we collected measurements of container transportation parameters using georeferenced movement detection and logs from wireless equipment positioned on the diesel-powered container trucks. Results: The modeling results showed that an instantaneous evaluation of energy consumption can reveal areas in the container transportation process which have the highest energy loss and require the introduction of new management and process control initiatives to address the regulations which are designed to decrease harmful industrial emissions and encourage novel technologies and thereby increase the eco-friendliness of existing systems. Conclusion: Based on the research results, the article can provide a reference for the estimation of diesel truck efficiency in seaport terminal operations.


2010 ◽  
Vol 10 (4) ◽  
pp. 1087-1095 ◽  
Author(s):  
Yanbin Liu ◽  
Chunguang Zhou ◽  
Dongwei Guo ◽  
Kangping Wang ◽  
Wei Pang ◽  
...  

2021 ◽  
Vol 13 (7) ◽  
pp. 3705
Author(s):  
Veterina Nosadila Riaventin ◽  
Sofyan Dwi Cahyo ◽  
Ivan Kristianto Singgih

This study discusses the problem of determining which container port should be developed within an existing network and when this should be carried out. A case study of Indonesia’s port network is presented, where several new ports are to be improved to ensure smooth interisland transportation flows of goods. The effects of the investment on economic consequences and increased network connectivity are assessed. When improving the ports, we consider that the available budget limits the investment. The network connectivity is evaluated by considering the number of reachable ports from the developed ports or transportation time required from other ports within the same port cluster. Based on our knowledge, our study is the first one that discusses the investment problem in multiple container ports under single management, as well as its effects regarding the increase in container flows. The problem is introduced and three mathematical models are proposed and used to solve a real problem. The results show that different models have different improved aspects of container transportation flows—e.g., a balanced improvement of the whole port network (Model 2) and appropriate investment priority for port clusters (Model 3).


2002 ◽  
pp. 149-161
Author(s):  
Hironao TAKAHASHI ◽  
Tomoyuki MATSUO ◽  
Koshi YAMAMOTO

2012 ◽  
Vol 59 (3-4) ◽  
pp. 266-277 ◽  
Author(s):  
Kangbok Lee ◽  
Byung-Cheon Choi ◽  
Joseph Y-T. Leung ◽  
Michael L. Pinedo ◽  
Dirk Briskorn

2021 ◽  
pp. 1-24
Author(s):  
Ping Chi Yuen ◽  
Kenji Sasa ◽  
Hideo Kawahara ◽  
Chen Chen

Abstract Condensation inside marine containers occurs during voyages owing to weather changes. In this study, we define the condensation probability along one of the major routes for container ships between Asia and Europe. First, the inside and outside air conditions were measured on land in Japan, and a correlation analysis was conducted to derive their relationship. Second, onboard measurements were conducted for 20,000 twenty-foot equivalent unit (TEU) ships to determine the variation in outside air conditions. Complicated patterns of weather change were observed with changes in latitude, sea area, and season. Third, condensation probability was estimated based on a multi-regression analysis with land and onboard measured data. The maximum condensation probability in westbound or eastbound voyages in winter was found to be approximately 50%. The condensation probability estimation method established in this study can contribute to the quantification of cargo damage risks for the planning of marine container transportation voyages.


Sign in / Sign up

Export Citation Format

Share Document