scholarly journals Evaluation of the Organic Soil Compressibility from In-Situ and Laboratory Tests for Road Application

2021 ◽  
Vol 16 (2) ◽  
pp. 110-126
Author(s):  
Iwona Chmielewska

Organic soil is characterised by high compressibility and should be improved so that it can be used for construction. The use of every method of soil improvement requires knowledge of the compressibility parameters. One of these parameters is the constrained modulus. The constrained modulus can be determined using laboratory or in-situ tests. In this study, the constrained modulus of organic soil was determined using oedometer and piezocone tests (CPTU). The author analysed subsoil under an approximately 250 m section of a designed road in north-eastern Poland. The constrained modulus of organic soil sampled from four different depths was determined in oedometer tests. Piezocone tests were conducted at 18 points located every 15 m along the length of the section concerned. To determine the constrained modulus based on the cone resistance from CPTU tests, the knowledge of the α and αM coefficients is needed. For the tested soil, the optimal range of the α coefficient from 0.4 to 0.7 was determined. The αM coefficient ranged from 0.4 to 0.8. The value of the constrained modulus of organic soil obtained from the oedometer tests, depending on the effective stress, ranged from approximately 100 kPa to 400 kPa. The constrained modulus of the tested soil decreased with depth, which both research methods proved.

1990 ◽  
Vol 27 (1) ◽  
pp. 58-67 ◽  
Author(s):  
Mohammed G. Kabir ◽  
Alan J. Lutenegger

An investigation was conducted to demonstrate the applicability of cylindrical piezocone and flat piezoblade tests for providing reliable estimates of the coefficient of consolidation in clays. Coefficients of consolidation were calculated from piezocone dissipation tests for different degrees of consolidation using theoretical time factors to provide a comparison with laboratory oedometer tests. Three techniques were developed to calculate the coefficient of consolidation from piezoblade dissipation tests. Results from in situ pore pressure dissipation tests were compared with laboratory oedometer tests performed on undisturbed samples oriented in both the vertical and horizontal directions, to provide reference values of cv and ch. The results of investigations conducted at several clay sites are presented. Key words: in situ tests, piezocone, piezoblade, coefficient of consolidation, oedometer test, clays.


1988 ◽  
Vol 25 (1) ◽  
pp. 76-84 ◽  
Author(s):  
Vinod K. Garga

This paper describes an experimental investigation on the effect of sample size on consolidation characteristics of fissured London Clay. Pore pressure dissipation tests on 38, 100, and 300 mm diameter samples were undertaken in the laboratory. Constant-head in situ permeability tests were conducted in four boreholes at different depths in the clay. Conventional oedometer tests on 76 mm diameter samples recovered from the same depths at which in situ permeability tests were carried out were also undertaken. The results show that both the coefficient of compressibility mv and the coefficient of consolidation determined in the laboratory are not significantly affected by sample size. It is concluded that estimate of in situ coefficient of consolidation can best be made from mv determined in the laboratory, and from in situ permeability measurements. Key words: consolidation, compressibility, fissured clay, permeability, size effect, testing.


1991 ◽  
Vol 28 (1) ◽  
pp. 103-112 ◽  
Author(s):  
C.B. Crawford ◽  
R. G. Campanella

Settlement calculations for an earth embankment resting on soft, compressible Fraser River Delta sediments were made from laboratory consolidation tests and in situ tests using a piezocone and a flat dilatometer. The calculated values were compared with measured settlements. There was rather good agreement among the three methods of calculation, but the actual settlement was about 60% greater than the average calculated value. Calculated rates of settlement are also compared with observed values. Key words: consolidation, settlements, piezocone, dilatometer, in situ tests, constrained modulus, pore-water pressure, settlement rate.


1981 ◽  
Vol 61 (1) ◽  
pp. 137-144 ◽  
Author(s):  
J. A. CAMPBELL ◽  
L. FRASCARELLI

A new technique for measuring CO2 evolved from organic soil at different depths in situ was used to monitor CO2 evolution in four experimental sites in southwestern Quebec and in an undisturbed soil column in the laboratory. The technique can be used in conjunction with in situ measurements of surface evolution of CO2, which are used as indicators of total subsidence by oxidation. Subsurface measurements of CO2 evolution provide more detailed estimates of where oxidation is occurring within the profile in organic soils. It also provides a simpler, more direct way of measuring CO2 fluxes below the soil surface than modelling from concentration profiles.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4743
Author(s):  
Tomasz Janoszek ◽  
Zbigniew Lubosik ◽  
Lucjan Świerczek ◽  
Andrzej Walentek ◽  
Jerzy Jaroszewicz

The paper presents the results of experimental and model tests of transport of dispersed fluid droplets forming a cloud of aerosol in a stream of air ventilating a selected section of the underground excavation. The excavation selected for testing is part of the ventilation network of the Experimental Mine Barbara of the Central Mining Institute. For given environmental conditions, such as temperature, pressure, relative humidity, and velocity of air, the distribution of aerosol droplet changes in the mixture of air and water vapor along the excavation at a distance was measured at 10 m, 25 m, and 50 m from the source of its emission. The source of aerosol emission in the excavation space was a water nozzle that was located 25 m from the inlet (inlet) of the excavation. The obtained results of in situ tests were related to the results of numerical calculations using computational fluid dynamics (CFD). Numerical calculations were performed using Ansys-Fluent and Ansys-CFX software. The dimensions and geometry of the excavation under investigation are presented. The authors describe the adopted assumptions and conditions for the numerical model and discuss the results of the numerical solution.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2313
Author(s):  
Maria Luisa Beconcini ◽  
Pietro Croce ◽  
Paolo Formichi ◽  
Filippo Landi ◽  
Benedetta Puccini

The evaluation of the shear behavior of masonry walls is a first fundamental step for the assessment of existing masonry structures in seismic zones. However, due to the complexity of modelling experimental behavior and the wide variety of masonry types characterizing historical structures, the definition of masonry’s mechanical behavior is still a critical issue. Since the possibility to perform in situ tests is very limited and often conflicting with the needs of preservation, the characterization of shear masonry behavior is generally based on reference values of mechanical properties provided in modern structural codes for recurrent masonry categories. In the paper, a combined test procedure for the experimental characterization of masonry mechanical parameters and the assessment of the shear behavior of masonry walls is presented together with the experimental results obtained on three stone masonry walls. The procedure consists of a combination of three different in situ tests to be performed on the investigated wall. First, a single flat jack test is executed to derive the normal compressive stress acting on the wall. Then a double flat jack test is carried out to estimate the elastic modulus. Finally, the proposed shear test is performed to derive the capacity curve and to estimate the shear modulus and the shear strength. The first results obtained in the experimental campaign carried out by the authors confirm the capability of the proposed methodology to assess the masonry mechanical parameters, reducing the uncertainty affecting the definition of capacity curves of walls and consequently the evaluation of seismic vulnerability of the investigated buildings.


2021 ◽  
Vol 6 (7) ◽  
pp. 99
Author(s):  
Christian Overgaard Christensen ◽  
Jacob Wittrup Schmidt ◽  
Philip Skov Halding ◽  
Medha Kapoor ◽  
Per Goltermann

In proof-loading of concrete slab bridges, advanced monitoring methods are required for identification of stop criteria. In this study, Two-Dimensional Digital Image Correlation (2D DIC) is investigated as one of the governing measurement methods for crack detection and evaluation. The investigations are deemed to provide valuable information about DIC capabilities under different environmental conditions and to evaluate the capabilities in relation to stop criterion verifications. Three Overturned T-beam (OT) Reinforced Concrete (RC) slabs are used for the assessment. Of these, two are in situ strips (0.55 × 3.6 × 9.0 m) cut from a full-scale OT-slab bridge with a span of 9 m and one is a downscaled slab tested under laboratory conditions (0.37 × 1.7 × 8.4 m). The 2D DIC results includes full-field plots, investigation of the time of crack detection and monitoring of crack widths. Grey-level transformation was used for the in situ tests to ensure sufficient readability and results comparable to the laboratory test. Crack initiation for the laboratory test (with speckle pattern) and in situ tests (plain concrete surface) were detected at intervals of approximately 0.1 mm to 0.3 mm and 0.2 mm to 0.3 mm, respectively. Consequently, the paper evaluates a more qualitative approach to DIC test results, where crack indications and crack detection can be used as a stop criterion. It was furthermore identified that crack initiation was reached at high load levels, implying the importance of a target load.


2021 ◽  
Vol 16 (4) ◽  
pp. 121-137
Author(s):  
Michele Fabio Granata

The case-study of a steel bowstring bridge set in a marine environment and highly damaged by corrosion is presented. The bridge was built in 2004 and was repainted for corrosion protection in 2010. Despite the recent construction and the maintenance interventions, many structural elements like hangers are highly damaged by corrosion with decreasing performance in terms of serviceability and ultimate limit states. A deep investigation was carried out in order to assess the bridge and to establish the necessary retrofit actions to be carried out in the near future. In-situ tests reveal the reduced performance of the original steel in terms of strength and corrosion protection, together with the inefficiency of the successive maintenance interventions. The paper presents assessment of the bridge and retrofit measures, including replacement of the hangers and galvanization through thermal spray coating technology, in order to increase its service life. The results of the investigations and the intervention measures are outlined and discussed.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1131
Author(s):  
Soonkie Nam ◽  
Marte Gutierrez ◽  
Panayiotis Diplas ◽  
John Petrie

This paper critically compares the use of laboratory tests against in situ tests combined with numerical seepage modeling to determine the hydraulic conductivity of natural soil deposits. Laboratory determination of hydraulic conductivity used the constant head permeability and oedometer tests on undisturbed Shelby tube and block soil samples. The auger hole method and Guelph permeameter tests were performed in the field. Groundwater table elevations in natural soil deposits with different hydraulic conductivity values were predicted using finite element seepage modeling and compared with field measurements to assess the various test results. Hydraulic conductivity values obtained by the auger hole method provide predictions that best match the groundwater table’s observed location at the field site. This observation indicates that hydraulic conductivity determined by the in situ test represents the actual conditions in the field better than that determined in a laboratory setting. The differences between the laboratory and in situ hydraulic conductivity values can be attributed to factors such as sample disturbance, soil anisotropy, fissures and cracks, and soil structure in addition to the conceptual and procedural differences in testing methods and effects of sample size.


Sign in / Sign up

Export Citation Format

Share Document