scholarly journals SOIL AND RADIONUCLIDES OF EASTERN HERZEGOVINA

2019 ◽  
Vol 1 (20) ◽  
Author(s):  
Vesna Tunguz ◽  
Bojana Petrović ◽  
Zoranka Malešević ◽  
Slađana Petronić

Soil is one of the most important natural resources. Measurement of natural radioactivity in soil is very important to determine the amount of change of the natural background activity with time as a result of any radioactivity release. Coal mine and thermal power plant in Gacko field is a very important industrial facility. The content of radionuclides of the soil was examined at Gacko area, slag, ash and mullock dumps in thethermal power plant Gacko and soils of dumps in the process of re-cultivation. The gamma – spectrometric measurements were done in the Institute of Nuclear Sciences “Vinča” in Belgrade.Soil samples were collected in 2010/2014 at more locations in eastern part of Republic of Srpska. After removing the stones and vegetation, all soil samples for Gama spectrometric measurements dried up to 0 105 C, sieved, placed in the plastic 500 mL Marinelli beakers and left for four weeks to reach radioactive equilibrium. Given that there are no specific regulations in the Republic of Srpska, the concentration of natural and produced radionuclides in samples from the working and living environment of thermal power plants, comparison with literature data from the region and the world is one way of evaluating the impact of the plant's operation on the soils. The results point to the necessity of regular monitoring of radioactivity in eastern Herzegovina in order to assess the impact of the technologically increased natural radioactivity.

2012 ◽  
Vol 608-609 ◽  
pp. 1298-1301
Author(s):  
Yong Li ◽  
Shi Ming Xu ◽  
Sheng Wen Huang ◽  
Wu Yi Du

Based on the situation that the transformations of the technology which is used to reclaim the physical sensible heat of the boiler slag in some industrial captive power plants, it has been used the heat balance method and the equivalent heat drop method to calculate and analyze the thermal economic indicators before and after the transformations of the unit, and then reveal the mechanism of the impact of the boiler slag’s physical sensible heat on the thermal economy of the whole plant.


Author(s):  
В. Буланин ◽  
V. Bulanin

The main sources of thermal energy for the heat supply of cities and settlements are fuel-based thermal power plants and boilers. The article provides an analysis of the energy balance of a power plant in connection with the need to minimize the cost of fuel and electricity for heat supply. New analytical expressions comprehensively characterizing the efficiency of a power plant are developed. The analytical assessment of the impact of energy costs for the boiler needs on the energy balance of thermal power plant is made; methods for constructing schemes of the energy balance of thermal power plant and assessment of fuel efficiency in the boiler are designed. Attention is paid to errors arising from the use of the calculated values of air suction in the gas path of the boiler, and not the actual ones. Therefore, it is proposed to change the method of measuring heat loss with flue gases in order to eliminate or reduce the effect of air suction on the measurement results, taking into account the part of the flue gas heat received by the air in the air heater and returned to the boiler through the burner. The methods increasing accuracy of calculations of energy efficiency of the technological processes which are key in the centralized heat supply of the cities and settlements are developed.


Author(s):  
Cássio Florisbal de Almeida ◽  
Vinícius Gonçalves Maciel ◽  
Luiz Fernando de Abreu Cybis

O setor energético é de suma importância para o crescimento estratégico de qualquer país. Isso não é diferente no Brasil, o qual apresenta uma matriz energética diversificada, mas que tem um predomínio do setor hidrelétrico. No entanto, o setor termelétrico tem crescido nos últimos anos para garantir a segurança energética e, nos sistemas isolados, a termeletricidade é predominante. Este é o caso do estado do Amazonas, o qual recebe energia prioritariamente de usinas termelétricas da região. As usinas da região utilizam, em sua maioria, combustíveis fósseis tais como diesel, óleo combustível pesado (HFO, em inglês). Atualmente, tem sido incorporada a este sistema a utilização do gás natural proveniente da bacia petrolífera amazônica, localizada em Urucu. Nesse sentido, para analisar a influência ambiental desta mudança nas usinas termelétricas, este emprega a metodologia de Avaliação do Ciclo de Vida (ACV) da eletricidade entregue ao grid por uma usina termelétrica, localizada em Manaus, que utiliza óleo combustível pesado e gás natural como combustível. O estudo foi conduzido do berço ao portão da usina a partir de dados primários da própria usina e dados secundários de bibliografia da área. Para a observação das diferenças, fez-se um estudo comparativo entre a mesma usina em duas situações: utilizando somente óleo combustível pesado e o uso concomitante deste combustível com o gás natural. A Avaliação do Impacto de Ciclo de Vida foi calculada pelo método CML IA baseline com o uso do software SimaPro e escolheu-se a categoria de impacto de Aquecimento Global para análise. A conversão bicombustível resultou em redução do impacto da usina, que antes era de 590,50 kg CO2eq/MWh e passou para 521,11 CO2eq/MWh, no entanto ao longo do ciclo de vida o resultado se manteve no mesmo patamar. Resumen El sector energético es de suma importancia para el crecimiento estratégico de cualquier país. Esto no es diferente en Brasil, que tiene una matriz energética diversificada, pero que tiene un predominio del sector hidroeléctrico. Sin embargo, el sector termoeléctrico ha crecido en los últimos años para garantizar la seguridad energética y, en sistemas aislados, termoelectricidad es predominante. Este es el caso de estado del Amazonas, que recibe energía principalmente de centrales térmicas de energía en la región. Las plantas de la región utilizan, sobre todo, combustibles fósiles como el diesel, fuelóleo pesado (HFO en inglés). En la actualidad, se ha incorporado a este sistema, el uso de gas natural de la cuenca petrolífera del Amazonas, situado en Urucu. En este sentido, para analizar el impacto ambiental de este cambio en las centrales térmicas, este estudio emplea la metodología del Análisis de Ciclo de Vida (ACV) de la electricidad entregada a la red por una central térmica, que se encuentra en Manaus, que utiliza fuelóleo pesado y gas natural como combustibles. El estudio se realizó a partir de datos primarios de la central térmica y datos secundarios de literatura del área. Para observar las diferencias, se hizo un estudio comparativo de la misma planta en dos situaciones: utilizando sólo el fuelóleo pesado y el uso concomitante de este combustible con gas natural. La evaluación del impacto del ciclo de vida se calculó por el método de CML IA baseline usando el software SimaPro y optó por categoría de impacto del calentamiento global para análisis. La conversión bi-combustible resultó en una redución del impacto de la planta, que antes era de 590.50 kg CO2eq / MWh y aumentó a 521.11 CO2eq / MWh. Sin embargo a lo largo del ciclo de vida, el resultado se mantuvo en el mismo nivel. Abstract The electric sector is very important to the strategic growing of any country. It isn’t different in Brazil, which shows a diversified energy matrix, but has a predominance of hydropower sector. However, the thermoelectric sector has grown in the last years to guarantee the electrical safety and, in isolated systems, the thermoelectricity is predominant. It is the case of Amazonas State, which receives energy priority from thermal power plants in the region. They use, mostly, fossil fuels such as Diesel, Heavy Fuel Oil (HFO). Nowadays, it has been incorporated into this system the natural gas use from Amazon oil basin, located in Urucu. In this sense, to analyze the environmental influence of this change on the thermal power plants, this study intends to employ the methodology of Life Cycle Assessment (LCA) of the electricity delivered to the grid by one thermal power plant (TPP), located in Manaus, which uses HFO and Natural Gas as fuel. For observation of differences, it was performed a comparative study of this power plant in two situations: using only HFO and using HFO and Natural gas concomitant. The study was conducted from cradle to gate of the power plant from specific primary data, provided by the power plant and secondary data from the literature. The Life Cycle Impact Assessment (LCIA) was calculated from the CML IA baseline with the use of SimaPro software and it was chosen the impact category of Global Warming Potential (GWP) for analysis. The conversion bifuel resulted in reduction of the impact of the TPP, which previously was 590.50 kg CO2eq / MWh and passed to 521.11 CO2eq / MWh. However, the bifuel power plant has, along the lifecycle, when compared the operation with only HFO, the same magnitude of GWP due to contributions of, for example, natural gas production.


Energies ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 5848
Author(s):  
Guzel Mingaleeva ◽  
Olga Afanaseva ◽  
Duc Toan Nguen ◽  
Dang Nayt Pham ◽  
Pietro Zunino

The article describes a method of integrating small distributed generation components in the power system of the Republic of Vietnam. The features of the energy system of Vietnam and the technologies used for mini thermal power plants are considered. The classification of small distributed generation components is presented with implantation of the most used resources of Vietnam—fossil and renewable. A generalized methodology for selection and calculation of technological schemes for mini thermal power plants is considered. The schemes of steam-turbine mini thermal power plants operating with coal and gas-turbine mini thermal power plants with solar air heaters are selected. Based on the calculation of the selected mini thermal power plant schemes, their distribution in the territory of the Republic of Vietnam has been obtained. The thermoeconomic efficiency has been chosen as the criterion for the best option for placing mini thermal power plants; its value for the proposed option is of 6.77%.


2016 ◽  
Vol 2 (01) ◽  
Author(s):  
Namita Gupta ◽  
S. K. Dwivedi ◽  
D. Upreti

Coal based thermal power plants are considered as major point sources emitting considerable amount of particulate matter, fly ash, greenhouse gases, non-combustible hydrocarbons and metals. In order to assess the impact of thermal power plant in Eastern Uttar Pradesh, India, two morphologically distinct lichen species Pyxine cocoes and Bacidia incongruens have been used for conducting biomonitoring studies around thermal power plant located in Tanda district (Uttar Pradesh). Result shows that both the species differs in morphology and anatomy but bioaccumulates more or less similar concentration of metal through adsorption and absorption, as validated by SEM and FTIR respectively. The bioaccumulation in particulate form absorbed on the surface of the lichen thallus further support the particulate bound association of the pollutants emitted from thermal power plant a source of metals. .


Author(s):  
В. Буланин ◽  
V. Bulanin

The main energy-consuming element of the heat supply system of cities and settlements is a source of heat energy. In connection with the need to minimize the cost of fuel and electricity for heat supply, the article presents an analysis of the energy balance of the steam turbine installation, on the basis of which new analytical expressions are developed that comprehensively characterize the efficiency of the power plant. In 2000 еру RD 153-34.1-09.163-00 "Model program of energy audits of thermal power plants and district boiler houses of joint-stock companies of power and electrification of Russia" was enacted. Some aspects of the analysis of the energy balance of the steam turbine installation using the relative increase in heat consumption for condensation power generation are considered. An analytical assessment of the impact of energy costs on the boiler unit's own needs on the energy balance of the thermal power plant is made.


Author(s):  
Yuliya S. Borisova ◽  
Nataliya S. Samarskaya

Introduction. Active withdrawal of energy raw materials from the subsoil, as well as technogenic impact from energy sources based on traditional fuel, lead to irreversible environmental consequences. To minimize this impact, it is necessary to start from two main conditions: the search for alternative energy sources and the improvement of the existing ones. Problem Statement. The objective of this study is a comparative analysis of energy facilities in order to identify the plant that has the greatest negative impact on the environment. Theoretical part. The comparative analysis of various energy production systems reflects the ecological and economic components of each. For example, a thermal power plant (TPP), a nuclear power plant (NPP) and a wind power plant (WPP) are considered. The negative impact on the environment is mainly exerted on the atmospheric air, in connection with which the data on the amount of pollutants are considered. Also, a modified Leopold matrix was constructed for an expert assessment of the mentioned stations. Conclusions. The results of the analysis show that among the considered power plants, the wind power plant is the most environmentally friendly and favorable for the health of the population.


2012 ◽  
Vol 58 (4) ◽  
pp. 351-356
Author(s):  
Mincho B. Hadjiski ◽  
Lyubka A. Doukovska ◽  
Stefan L. Kojnov

Abstract Present paper considers nonlinear trend analysis for diagnostics and predictive maintenance. The subject is a device from Maritsa East 2 thermal power plant a mill fan. The choice of the given power plant is not occasional. This is the largest thermal power plant on the Balkan Peninsula. Mill fans are main part of the fuel preparation in the coal fired power plants. The possibility to predict eventual damages or wear out without switching off the device is significant for providing faultless and reliable work avoiding the losses caused by planned maintenance. This paper addresses the needs of the Maritsa East 2 Complex aiming to improve the ecological parameters of the electro energy production process.


Author(s):  
Ye. G. Polenok ◽  
S. A. Mun ◽  
L. A. Gordeeva ◽  
A. A. Glushkov ◽  
M. V. Kostyanko ◽  
...  

Introduction.Coal dust and coal fi ring products contain large amounts of carcinogenic chemicals (specifically benz[a]pyrene) that are different in influence on workers of coal mines and thermal power plants. Specific immune reactions to benz[a]pyrene therefore in these categories of workers can have specific features.Objective.To reveal features of antibodies specifi c to benz[a]pyrene formation in workers of coal mines and thermal power plants.Materials and methods.The study covered A and G class antibodies against benz[a]pyrene (IgA-Bp and IgG-Bp) in serum of 705 males: 213 donors of Kemerovo blood transfusion center (group 1, reference); 293 miners(group 2) and 199 thermal power plant workers (group 3). Benz[a]pyrene conjugate with bovine serum albumin as an adsorbed antigen was subjected to immune-enzyme assay.Results.IgA-Bp levels in the miners (Me = 2.7) did not differ from those in the reference group (Me = 2.9), but in the thermal power plant workers (Me = 3.7) were reliably higher than those in healthy men and in the miners (p<0.0001). Levels of IgG-Bp in the miners (Me = 5.0) appeared to be lower than those in the reference group (Me = 6.4; (p = 0.05). IgG-Bb level in the thermal power plantworkers (Me = 7.4) exceeded the parameters in the healthy donors and the miners (p<0.0001). Non-industrial factors (age and smoking) appeared tohave no influence on specific immune reactions against benz[a]pyrene in the miners and the thermal power plant workers.Conclusions.Specific immune reactions against benz[a]pyrene in the miners and the thermal power plant workers are characterized by peculiarities: the miners demonstrate lower levels of class A serum antibodies to benz[a]pyrene; the thermal power plant workers present increased serum levels of class G antibodies to benz[a]pyrene. These peculiarities result from only the occupational features, but do not depend on such factors as age, smoking and length of service at hazardous production. It is expedient to study specific immune reactions to benz[a]pyrene in workers of coal mines and thermal power plants, to evaluate individual oncologic risk and if malignancies occur.


2021 ◽  
Vol 13 (13) ◽  
pp. 7279
Author(s):  
Zbigniew Skibko ◽  
Magdalena Tymińska ◽  
Wacław Romaniuk ◽  
Andrzej Borusiewicz

Wind power plants are an increasingly common source of electricity located in rural areas. As a result of the high variability of wind power, and thus the generated power, these sources should be classified as unstable sources. In this paper, the authors attempted to determine the impact of wind turbine operation on the parameters of electricity supplied to farms located near the source. As a result of the conducted field tests, variability courses of the basic parameters describing the supply voltage were obtained. The influence of power plant variability on the values of voltage, frequency, and voltage distortion factor was determined. To estimate the capacity of the transmission lines, the reactive power produced in the power plant and its effect on the value of the power factor were determined. The conducted research and analysis showed that the wind power plant significantly influences voltage fluctuations in its immediate vicinity (the maximum value registered was close to 2%, while the value required by law was 2.5%). Although all the recorded values are within limits specified by the current regulations (e.g., the THD value is four times lower than the required value), wind turbines may cause incorrect operation of loads connected nearby. This applies mainly to cases where consumers sensitive to voltage fluctuations are installed in the direct vicinity of the power plant.


Sign in / Sign up

Export Citation Format

Share Document