scholarly journals Comparative analysis of the impact of objects of traditional and alternative energy on the environment

Author(s):  
Yuliya S. Borisova ◽  
Nataliya S. Samarskaya

Introduction. Active withdrawal of energy raw materials from the subsoil, as well as technogenic impact from energy sources based on traditional fuel, lead to irreversible environmental consequences. To minimize this impact, it is necessary to start from two main conditions: the search for alternative energy sources and the improvement of the existing ones. Problem Statement. The objective of this study is a comparative analysis of energy facilities in order to identify the plant that has the greatest negative impact on the environment. Theoretical part. The comparative analysis of various energy production systems reflects the ecological and economic components of each. For example, a thermal power plant (TPP), a nuclear power plant (NPP) and a wind power plant (WPP) are considered. The negative impact on the environment is mainly exerted on the atmospheric air, in connection with which the data on the amount of pollutants are considered. Also, a modified Leopold matrix was constructed for an expert assessment of the mentioned stations. Conclusions. The results of the analysis show that among the considered power plants, the wind power plant is the most environmentally friendly and favorable for the health of the population.

Polymers ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 1828 ◽  
Author(s):  
Izabela Piasecka ◽  
Patrycja Bałdowska-Witos ◽  
Józef Flizikowski ◽  
Katarzyna Piotrowska ◽  
Andrzej Tomporowski

Controlling the system—the environment of power plants is called such a transformation—their material, energy and information inputs in time, which will ensure that the purpose of the operation of this system or the state of the environment, is achieved. The transformations of systems and environmental inputs and their goals describe the different models, e.g., LCA model groups and methods. When converting wind kinetic energy into electricity, wind power plants emit literally no harmful substances into the environment. However, the production and postuse management stages of their components require large amounts of energy and materials. The biggest controlling problem during postuse management is wind power plant blades, followed by waste generated during their production. Therefore, this publication is aimed at carrying out an ecological, technical and energetical transformation analysis of selected postproduction waste of wind power plant blades based on the LCA models and methods. The research object of control was eight different types of postproduction waste (fiberglass mat, roving fabric, resin discs, distribution hoses, spiral hoses with resin, vacuum bag film, infusion materials residues, surplus mater), mainly made of polymer materials, making it difficult for postuse management and dangerous for the environment. Three groups of models and methods were used: Eco-indicator 99, IPCC and CED. The impact of analysis objects on human health, ecosystem quality and resources was controlled and assessed. Of all the tested waste, the life cycle of resin discs made of epoxy resin was characterized by the highest level of harmful technology impact on the environment and the highest energy consumption. Postuse control and management in the form of recycling would reduce the negative impact on the environment of the tested waste (in the perspective of their entire life cycle). Based on the results obtained, guidelines and models for the proecological postuse control of postproduction polymer waste of wind power plants blades were proposed.


Materials ◽  
2021 ◽  
Vol 14 (1) ◽  
pp. 204
Author(s):  
Patrycja Bałdowska-Witos ◽  
Krzysztof Doerffer ◽  
Michał Pysz ◽  
Piotr Doerffer ◽  
Andrzej Tomporowski ◽  
...  

The process of conversion of wind kinetic energy into electricity in innovative wind power plant emits practically no harmful substances into the environment. However, the production stage of its components requires a lot of energy and materials. The biggest problem during production planning process of an innovative wind power plant is selection of materials and technologies and, consequently, the waste generated at this stage. Therefore, the aim of this publication was to conduct an environmental analysis of the life cycle of elements of a wind turbine by means of life cycle assessment (LCA) method. The object of the research was a wind power plant divided into five sets of components (tower, turbine structure, rotors, generators, and instrumentation), made mainly of steel and small amounts of polymer materials. Eco-indicator 99 was used as an analytical procedure. The impact of the subjects of analysis on human health, ecosystem quality and resources was assessed. Among the analyzed components, the highest level of negative impact on the environment was characterized by the life cycle of the wind turbine tower. The application of recycling processes is reducing the negative impact on the environment in the perspective of the entire life cycle of all studied elements of the wind power plant construction.


2019 ◽  
Vol 9 (2) ◽  
pp. 231 ◽  
Author(s):  
Izabela Piasecka ◽  
Andrzej Tomporowski ◽  
Józef Flizikowski ◽  
Weronika Kruszelnicka ◽  
Robert Kasner ◽  
...  

This study deals with the problems connected with the benefits and costs of an offshore wind power plant in terms of ecology. Development prospects of offshore and land-based wind energy production are described. Selected aspects involved in the design, construction, and operation of offshore wind power plant construction and operation are presented. The aim of this study was to analyze and compare the environmental impact of offshore and land-based wind power plants. Life cycle assessment analysis of 2-MW offshore and land wind power plants was made with the use of Eco-indicator 99 modeling. The results were compared in four areas of impact in order to obtain values of indexes for nonergonomic (impact on/by operator), nonfunctional (of/on the product), nonecological (on/by living objects), and nonsozological impacts (on/by manmade objects), reflecting the extent of threat to human health, the environment, and natural resources. The processes involved in extraction of fossil fuels were found to produce harmful emissions which in turn lead to respiratory system diseases being, thus, extremely dangerous for the natural environment. For all the studied areas, the impact on the environment was found to be higher for land-based wind power plants than for an offshore wind farm.


Author(s):  
Victorita Radulescu

Nowadays a large interest in the public and private sector is dedicated in generating electricity using renewable resources. Thus, over 60,000 MW is produced worldwide by using the wind energy. These systems are generally composed of power plants formed from 2–3 to several tens, hundreds of wind turbines with rotating blades that reach heights over 160m. The number, the height, and the rotation of these wind turbines represent technical challenges for the radar system efficiency and accuracy. They should be assessed carefully, in each case, to ensure that it maintains an acceptable level of the air space surveillance capability. The research paper presents the influence of the wind power farms on the air radars especially in cases of surveillance area, both for the primary radars and the secondary radars. There are differences between the interference between the wind turbines and radars functioning, depending on the types of radars. In the last decades in Romania is a permanent effort to increase the number the wind farms built, or in the process of being built, but also referring at the number of wind turbines in these parks and their physical dimensions. This paper focuses on the effects of the wind farms on the radars efficiency, and their potential impact on the ability of airspace surveillance. This results in a concise and transparent reference guide for developers of wind farms when assessing the impact of wind turbines on aerial surveillance systems. Specialists are relatively unanimous in their opinion that, in order to make an assessment of the impact of the wind farms on the radars must be defined at least three areas corresponding to different levels of the technical expertise. They must be combined with the influence of the wind farms on the ability of the radar to fulfill the mission, why they were installed, assuming that it is necessary to create an exclusive protection area. First, are discussed briefly the principles of the radar’s operation, depending on their type: primary and secondary surveillance radars. Further, are estimated the induced reflections by the wind power plant on the radar system. If the number of false targets generated by the reflections from wind turbines is too big, so it exceeds the processing capacity of the radar, the operational capacity will suffer. There are presented some theoretical aspects, followed by some cases where the proper functioning of the primary and secondary radars is affected. The model is tested in field, at two different distances, with airplanes and helicopter flying at different altitudes, with radar placed near the wind power plant Fantanele – Cogelac, the biggest in Romania. Finally, is estimated the area necessary to assure proper functioning of radars. Some conclusions and references are presented.


2018 ◽  
Vol 25 (s1) ◽  
pp. 225-233 ◽  
Author(s):  
Andrzej Tomporowski ◽  
Izabela Piasecka ◽  
Józef Flizikowski ◽  
Robert Kasner ◽  
Weronika Kruszelnicka ◽  
...  

Abstract In recent years, the offshore wind power industry has been growing dynamically. A key element which decides upon power output of a wind power plant is blades. They are most frequently produced from polymers – laminates with epoxy resins and fiberglass. In the near future, when the blade life cycles are over, large amounts of waste material of this type will have to be reused. This paper presents a comparison analysis of the impact of particular material existence cycle stages of land-based and offshore wind power plant blades on the environment. Two wind power plant blades, of about 49 m in length each, were examined using the LCA method, the programme SimaPro, and Ekowskaźnik 99 modelling (phase LCIA).


2021 ◽  
Vol 9 (1) ◽  
pp. 97-102
Author(s):  
Wijaya Kusuma ◽  
Anang Dasa Novfowan ◽  
Abdul Manaf

One of the efforts to tackle the energy crisis is by reducing dependence on fossil energy sources and utilizing alternative energy. One of the alternative energy is wind energy. Wind energy can be used to make power plants. Wind power plant is a method to generate electrical energy by turning the wind turbine which connected to the generator, then the electrical energy which generated by generator used for supplying the load. However, the availability of the wind energy are not always constant in strength, thus to make this power plant work continuously to supplying the load it needed the element of electrical energy storage,that is battery.In order to make the electrical energy storage become efficient then used the component to support the battery charging, the presence of these component the energy produced can be stored optimallyand the battery life can be longer. The purpose of this study is to design and analyze the performance of the charger controller and battery in the PLTB system which is then used to support the work of the Wind Power Plant prototype system in State Polytechnic of Malang. The result of this study is how to choose the charger controller and battery based on some consideration, the characteristics of each components before and after be assembled in Wind Power Plant prototype system in State Polytechnic of Malang


2021 ◽  
Vol 13 (13) ◽  
pp. 7279
Author(s):  
Zbigniew Skibko ◽  
Magdalena Tymińska ◽  
Wacław Romaniuk ◽  
Andrzej Borusiewicz

Wind power plants are an increasingly common source of electricity located in rural areas. As a result of the high variability of wind power, and thus the generated power, these sources should be classified as unstable sources. In this paper, the authors attempted to determine the impact of wind turbine operation on the parameters of electricity supplied to farms located near the source. As a result of the conducted field tests, variability courses of the basic parameters describing the supply voltage were obtained. The influence of power plant variability on the values of voltage, frequency, and voltage distortion factor was determined. To estimate the capacity of the transmission lines, the reactive power produced in the power plant and its effect on the value of the power factor were determined. The conducted research and analysis showed that the wind power plant significantly influences voltage fluctuations in its immediate vicinity (the maximum value registered was close to 2%, while the value required by law was 2.5%). Although all the recorded values are within limits specified by the current regulations (e.g., the THD value is four times lower than the required value), wind turbines may cause incorrect operation of loads connected nearby. This applies mainly to cases where consumers sensitive to voltage fluctuations are installed in the direct vicinity of the power plant.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1587
Author(s):  
Krzysztof Wrobel ◽  
Krzysztof Tomczewski ◽  
Artur Sliwinski ◽  
Andrzej Tomczewski

This article presents a method to adjust the elements of a small wind power plant to the wind speed characterized by the highest annual level of energy. Tests were carried out on the basis of annual wind distributions at three locations. The standard range of wind speeds was reduced to that resulting from the annual wind speed distributions in these locations. The construction of the generators and the method of their excitation were adapted to the characteristics of the turbines. The results obtained for the designed power plants were compared with those obtained for a power plant with a commercial turbine adapted to a wind speed of 10 mps. The generator structure and control method were optimized using a genetic algorithm in the MATLAB program (Mathworks, Natick, MA, USA); magnetostatic calculations were carried out using the FEMM program; the simulations were conducted using a proprietary simulation program. The simulation results were verified by measurement for a switched reluctance machine of the same voltage, power, and design. Finally, the yields of the designed generators in various locations were determined.


Author(s):  
Yih-Huei Wan ◽  
Michael Milligan ◽  
Brian Parsons

The National Renewable Energy Laboratory (NREL) started a project in 2000 to record long-term, high-frequency (1-Hz) wind power output data from large commercial wind power plants. Outputs from about 330 MW of wind generating capacity from wind power plants in Buffalo Ridge, Minnesota, and Storm Lake, Iowa, are being recorded. Analysis of the collected data shows that although very short-term wind power fluctuations are stochastic, the persistent nature of wind and the large number of turbines in a wind power plant tend to limit the magnitudes and rates of changes in the levels of wind power. Analyses of power data confirm that spatial separation greatly reduces variations in the combined wind power output relative to output from a single wind power plant. Data show that high frequency variations of wind power from two wind power plants 200 km apart are independent of each other, but low frequency power changes can be highly correlated. This fact suggests that time-synchronized power data and meteorological data can aid in the development of statistical models for wind power forecasting.


Sign in / Sign up

Export Citation Format

Share Document