scholarly journals Macrofaunal diversity gradients in Antarctic rocky benthic communities: Effects of glaciers and depth

Author(s):  
Luis Miguel Pardo ◽  
Ignacio Garrido ◽  
Paulina Bruning ◽  
Charlotte Carrier ◽  
Rossana Reveco ◽  
...  

Western Antarctic shows one of the fastest responses to climate change on Earth. Glacier meltdown and freshening are perhaps the most conspicuous evidence of anthropogenic impacts, that together with ice scouring can strongly modify benthic communities. The spatial extension of these impacts has been rarely explored in rocky subtidal environments. This study describes changes in benthic communities across glacier and bathymetric gradient in Fildes Bay, Antarctica. Suction samples were taken from four sites at increasing distance from the Collin glacier (0 - 2.5 – 5 - 7 km) and three depths (5 – 10 - 15 m). Macrofaunal diversity increased with depth across all distances from the glacier; these changes were associated with the increase in diversity of amphipods and echinoderms. The lowest and highest species diversity occurred at zero and two km from the glacier, indicating a strong, but localized, glacier effect. Variation in salinity tolerance and the abundance of key habitat forming algae could explain the spatial variation in these communities. This result remarks the importance of facilitation as a structuring force in Antarctic benthic communities. We suggest that the fate of communities in future climate-change scenarios will depend on how habitat-forming species respond to these environmental changes.

2018 ◽  
Author(s):  
Luis Miguel Pardo ◽  
Ignacio Garrido ◽  
Paulina Bruning ◽  
Charlotte Carrier ◽  
Rossana Reveco ◽  
...  

Western Antarctic shows one of the fastest responses to climate change on Earth. Glacier meltdown and freshening are perhaps the most conspicuous evidence of anthropogenic impacts, that together with ice scouring can strongly modify benthic communities. The spatial extension of these impacts has been rarely explored in rocky subtidal environments. This study describes changes in benthic communities across glacier and bathymetric gradient in Fildes Bay, Antarctica. Suction samples were taken from four sites at increasing distance from the Collin glacier (0 - 2.5 – 5 - 7 km) and three depths (5 – 10 - 15 m). Macrofaunal diversity increased with depth across all distances from the glacier; these changes were associated with the increase in diversity of amphipods and echinoderms. The lowest and highest species diversity occurred at zero and two km from the glacier, indicating a strong, but localized, glacier effect. Variation in salinity tolerance and the abundance of key habitat forming algae could explain the spatial variation in these communities. This result remarks the importance of facilitation as a structuring force in Antarctic benthic communities. We suggest that the fate of communities in future climate-change scenarios will depend on how habitat-forming species respond to these environmental changes.


2017 ◽  
Author(s):  
Marie Arnoux ◽  
Florent Barbecot ◽  
Elisabeth Gibert-Brunet ◽  
John Gibson ◽  
Aurélie Noret

Abstract. Lakes are under increasing pressure due to widespread anthropogenic impacts related to rapid development and population growth. Accordingly, many lakes are currently undergoing a systematic decline in water quality. Recent studies have highlighted that global warming and the subsequent change in water use may further exasperate eutrophication in lakes. Lake evolution depends strongly on hydrologic balance, and therefore on groundwater connectivity. Groundwater also influences the sensitivity of lacustrine ecosystems to climate and environmental changes, and governs their resilience. Improved characterization of groundwater exchange with lakes is needed today for lake preservation, lake restoration, and for sustainable management of lake water quality into the future. Small groundwater-connected lakes were chosen to simulate changes in water balance and water quality expected under future climate change scenarios, namely Representative Concentration Pathways (RCP) 4.5 and 8.5. Contemporary baseline conditions, including isotope mass balance and geochemical characteristics, were determined through an intensive field-based research program prior to the simulations. Results highlight that future lake geochemistry and isotopic composition trends will depend on four main parameters: location (therefore climate conditions), lake catchment size (which impacts the intensity of the flux change), lake volume (which impacts the range of variation), and lake G-index (i.e., the percentage of groundwater that makes up total lake inflows), the latter being the dominant control on water balance conditions, as revealed by the sensitivity of lake isotopic composition. Based on these model simulations, stable isotopes appear to be especially useful for detecting changes in recharge to lakes with a G-index of between 50 % and 80 %, but response is non-linear. Simulated monthly trends reveal that evolution of annual lake isotopic composition can be dampened by opposing monthly recharge fluctuations. It is also shown that changes in water quality in groundwater-connected lakes depend significantly on lake location and on the intensity of recharge change.


2017 ◽  
Vol 21 (11) ◽  
pp. 5875-5889 ◽  
Author(s):  
Marie Arnoux ◽  
Florent Barbecot ◽  
Elisabeth Gibert-Brunet ◽  
John Gibson ◽  
Aurélie Noret

Abstract. Lakes are under increasing pressure due to widespread anthropogenic impacts related to rapid development and population growth. Accordingly, many lakes are currently undergoing a systematic decline in water quality. Recent studies have highlighted that global warming and the subsequent changes in water use may further exacerbate eutrophication in lakes. Lake evolution depends strongly on hydrologic balance, and therefore on groundwater connectivity. Groundwater also influences the sensitivity of lacustrine ecosystems to climate and environmental changes, and governs their resilience. Improved characterization of groundwater exchange with lakes is needed today for lake preservation, lake restoration, and sustainable management of lake water quality into the future. In this context, the aim of the present paper is to determine if the future evolution of the climate, the population, and the recharge could modify the geochemistry of lakes (mainly isotopic signature and quality via phosphorous load) and if the isotopic monitoring of lakes could be an efficient tool to highlight the variability of the water budget and quality. Small groundwater-connected lakes were chosen to simulate changes in water balance and water quality expected under future climate change scenarios, namely representative concentration pathways (RCPs) 4.5 and 8.5. Contemporary baseline conditions, including isotope mass balance and geochemical characteristics, were determined through an intensive field-based research program prior to the simulations. Results highlight that future lake geochemistry and isotopic composition trends will depend on four main parameters: location (and therefore climate conditions), lake catchment size (which impacts the intensity of the flux change), lake volume (which impacts the range of variation), and lake G index (i.e., the percentage of groundwater that makes up total lake inflows), the latter being the dominant control on water balance conditions, as revealed by the sensitivity of lake isotopic composition. Based on these model simulations, stable isotopes appear to be especially useful for detecting changes in recharge to lakes with a G index of between 50 and 80 %, but response is non-linear. Simulated monthly trends reveal that evolution of annual lake isotopic composition can be dampened by opposing monthly recharge fluctuations. It is also shown that changes in water quality in groundwater-connected lakes depend significantly on lake location and on the intensity of recharge change.


Author(s):  
Jong Mun Lee ◽  
Jungkyu Ahn ◽  
Young Do Kim ◽  
Boosik Kang

Abstract Because of multifunctional weirs installed as part of large river regulation works in Korea, water quality problems have arisen from environmental changes in tandem with decreased flow rates. However, there has been limited research into the green algae removal effect, water quality improvement in congested waters, dam and weir operations, and consequential riverbed changes. Studies regarding outflow in a basin, the application and development of sediment load output analysis methods, feasibility of related dam operations, and riverbed patterns have been separately performed. However, basins and rivers should be analyzed by an integrated method instead of an individual one. Therefore, in the present study, the effect of congestion on a river connected to a dam/weir and estuary bank was analyzed based on climate change scenarios HadGEM3-RA RCP 4.5 and 8.5, with the aim of integrating individual studies using watershed and river models. Flow was controlled by dam- and weir-related discharge simulations. Variations in the riverbed caused by the transfer of suspended load in the downstream region were analyzed for both long and short durations. The results of this analysis suggest that given future climate change scenarios, the width of the river and riverbed variations in the riverbed are expected to rise.


2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Nabaz R. Khwarahm

Abstract Background The oak tree (Quercus aegilops) comprises ~ 70% of the oak forests in the Kurdistan Region of Iraq (KRI). Besides its ecological importance as the residence for various endemic and migratory species, Q. aegilops forest also has socio-economic values—for example, as fodder for livestock, building material, medicine, charcoal, and firewood. In the KRI, Q. aegilops has been degrading due to anthropogenic threats (e.g., shifting cultivation, land use/land cover changes, civil war, and inadequate forest management policy) and these threats could increase as climate changes. In the KRI and Iraq as a whole, information on current and potential future geographical distributions of Q. aegilops is minimal or not existent. The objectives of this study were to (i) predict the current and future habitat suitability distributions of the species in relation to environmental variables and future climate change scenarios (Representative Concentration Pathway (RCP) 2.6 2070 and RCP8.5 2070); and (ii) determine the most important environmental variables controlling the distribution of the species in the KRI. The objectives were achieved by using the MaxEnt (maximum entropy) algorithm, available records of Q. aegilops, and environmental variables. Results The model demonstrated that, under the RCP2.6 2070 and RCP8.5 2070 climate change scenarios, the distribution ranges of Q. aegilops would be reduced by 3.6% (1849.7 km2) and 3.16% (1627.1 km2), respectively. By contrast, the species ranges would expand by 1.5% (777.0 km2) and 1.7% (848.0 km2), respectively. The distribution of the species was mainly controlled by annual precipitation. Under future climate change scenarios, the centroid of the distribution would shift toward higher altitudes. Conclusions The results suggest (i) a significant suitable habitat range of the species will be lost in the KRI due to climate change by 2070 and (ii) the preference of the species for cooler areas (high altitude) with high annual precipitation. Conservation actions should focus on the mountainous areas (e.g., by establishment of national parks and protected areas) of the KRI as climate changes. These findings provide useful benchmarking guidance for the future investigation of the ecology of the oak forest, and the categorical current and potential habitat suitability maps can effectively be used to improve biodiversity conservation plans and management actions in the KRI and Iraq as a whole.


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2101
Author(s):  
Christian Charron ◽  
André St-Hilaire ◽  
Taha B.M.J. Ouarda ◽  
Michael R. van den Heuvel

Simulation of surface water flow and temperature under a non-stationary, anthropogenically impacted climate is critical for water resource decision makers, especially in the context of environmental flow determination. Two climate change scenarios were employed to predict streamflow and temperature: RCP 8.5, the most pessimistic with regards to climate change, and RCP 4.5, a more optimistic scenario where greenhouse gas emissions peak in 2040. Two periods, 2018–2050 and 2051–2100, were also evaluated. In Canada, a number of modelling studies have shown that many regions will likely be faced with higher winter flow and lower summer flows. The CEQUEAU hydrological and water temperature model was calibrated and validated for the Wilmot River, Canada, using historic data for flow and temperature. Total annual precipitation in the region was found to remain stable under RCP 4.5 and increase over time under RCP 8.5. Median stream flow was expected to increase over present levels in the low flow months of August and September. However, increased climate variability led to higher numbers of periodic extreme low flow events and little change to the frequency of extreme high flow events. The effective increase in water temperature was four-fold greater in winter with an approximate mean difference of 4 °C, while the change was only 1 °C in summer. Overall implications for native coldwater fishes and water abstraction are not severe, except for the potential for more variability, and hence periodic extreme low flow/high temperature events.


Water ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 219 ◽  
Author(s):  
Antonio-Juan Collados-Lara ◽  
David Pulido-Velazquez ◽  
Rosa María Mateos ◽  
Pablo Ezquerro

In this work, we developed a new method to assess the impact of climate change (CC) scenarios on land subsidence related to groundwater level depletion in detrital aquifers. The main goal of this work was to propose a parsimonious approach that could be applied for any case study. We also evaluated the methodology in a case study, the Vega de Granada aquifer (southern Spain). Historical subsidence rates were estimated using remote sensing techniques (differential interferometric synthetic aperture radar, DInSAR). Local CC scenarios were generated by applying a bias correction approach. An equifeasible ensemble of the generated projections from different climatic models was also proposed. A simple water balance approach was applied to assess CC impacts on lumped global drawdowns due to future potential rainfall recharge and pumping. CC impacts were propagated to drawdowns within piezometers by applying the global delta change observed with the lumped assessment. Regression models were employed to estimate the impacts of these drawdowns in terms of land subsidence, as well as to analyze the influence of the fine-grained material in the aquifer. The results showed that a more linear behavior was observed for the cases with lower percentage of fine-grained material. The mean increase of the maximum subsidence rates in the considered wells for the future horizon (2016–2045) and the Representative Concentration Pathway (RCP) scenario 8.5 was 54%. The main advantage of the proposed method is its applicability in cases with limited information. It is also appropriate for the study of wide areas to identify potential hot spots where more exhaustive analyses should be performed. The method will allow sustainable adaptation strategies in vulnerable areas during drought-critical periods to be assessed.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alizée Chemison ◽  
Gilles Ramstein ◽  
Adrian M. Tompkins ◽  
Dimitri Defrance ◽  
Guigone Camus ◽  
...  

AbstractStudies about the impact of future climate change on diseases have mostly focused on standard Representative Concentration Pathway climate change scenarios. These scenarios do not account for the non-linear dynamics of the climate system. A rapid ice-sheet melting could occur, impacting climate and consequently societies. Here, we investigate the additional impact of a rapid ice-sheet melting of Greenland on climate and malaria transmission in Africa using several malaria models driven by Institute Pierre Simon Laplace climate simulations. Results reveal that our melting scenario could moderate the simulated increase in malaria risk over East Africa, due to cooling and drying effects, cause a largest decrease in malaria transmission risk over West Africa and drive malaria emergence in southern Africa associated with a significant southward shift of the African rain-belt. We argue that the effect of such ice-sheet melting should be investigated further in future public health and agriculture climate change risk assessments.


Sign in / Sign up

Export Citation Format

Share Document