scholarly journals High tempo music prolongs high intensity exercise

Author(s):  
Meaghan Maddigan ◽  
Kathleen M Sullivan ◽  
Fabien A Basset ◽  
Israel Halperin ◽  
David G Behm

Music has been shown to reduce rating of perceived exertion, increase exercise enjoyment and enhance exercise performance, mainly in low-moderate intensity exercises. However, the effects of music are less conclusive with high-intensity activities. The purpose of this study was to compare the effects of high tempo music (130 bpm) to a no-music condition during repeated high intensity cycling bouts (80% of peak power output (PPO)) on the following measures: time to task failure (TTF), rating of perceived exertion (RPE), heart rate (HR), breathing frequency, ventilatory kinetics and blood lactate (BL). Under the music condition, participants exercised 10.7% longer (p = 0.035; Effect size (ES)= 0.28) (increase of one minute) and had higher HR (4%; p= 0.043; ES= 0.25), breathing frequency (11.6%; p= 0.0006; ES= 0.57), and RER (7% at TTF; p= 0.021; ES=1 .1) during exercise. Trivial differences were observed between conditions in RPE and other ventilatory kinetics during exercise. Interestingly, HR recovery was 13.0% faster following the music condition (p< 0.05). These results strengthen the notion that music can alter the association between central motor drive, central cardiovascular command and perceived exertion, and contribute to prolonged exercise duration at higher intensities along with a quicken HR recovery.

2018 ◽  
Author(s):  
Meaghan Maddigan ◽  
Kathleen M Sullivan ◽  
Fabien A Basset ◽  
Israel Halperin ◽  
David G Behm

Music has been shown to reduce rating of perceived exertion, increase exercise enjoyment and enhance exercise performance, mainly in low-moderate intensity exercises. However, the effects of music are less conclusive with high-intensity activities. The purpose of this study was to compare the effects of high tempo music (130 bpm) to a no-music condition during repeated high intensity cycling bouts (80% of peak power output (PPO)) on the following measures: time to task failure (TTF), rating of perceived exertion (RPE), heart rate (HR), breathing frequency, ventilatory kinetics and blood lactate (BL). Under the music condition, participants exercised 10.7% longer (p = 0.035; Effect size (ES)= 0.28) (increase of one minute) and had higher HR (4%; p= 0.043; ES= 0.25), breathing frequency (11.6%; p= 0.0006; ES= 0.57), and RER (7% at TTF; p= 0.021; ES=1 .1) during exercise. Trivial differences were observed between conditions in RPE and other ventilatory kinetics during exercise. Interestingly, HR recovery was 13.0% faster following the music condition (p< 0.05). These results strengthen the notion that music can alter the association between central motor drive, central cardiovascular command and perceived exertion, and contribute to prolonged exercise duration at higher intensities along with a quicken HR recovery.


PeerJ ◽  
2019 ◽  
Vol 6 ◽  
pp. e6164 ◽  
Author(s):  
Meaghan E. Maddigan ◽  
Kathleen M. Sullivan ◽  
Israel Halperin ◽  
Fabien A. Basset ◽  
David G. Behm

Music has been shown to reduce rating of perceived exertion, increase exercise enjoyment and enhance exercise performance, mainly in low-moderate intensity exercises. However, the effects of music are less conclusive with high-intensity activities. The purpose of this with-participant design study was to compare the effects of high tempo music (130 bpm) to a no-music condition during repeated high intensity cycling bouts (80% of peak power output (PPO)) on the following measures: time to exercise end-point, rating of perceived exertion (RPE), heart rate (HR), breathing frequency, ventilatory kinetics and blood lactate (BL). Under the music condition, participants exercised 10.7% longer (p = 0.035; Effect size (ES) = 0.28) (increase of 1 min) and had higher HR (4%; p = 0.043; ES = 0.25), breathing frequency (11.6%; p < 0.001; ES = 0.57), and RER (7% at TTF; p = 0.021; ES = 1.1) during exercise, as measured at the exercise end-point. Trivial differences were observed between conditions in RPE and other ventilatory kinetics during exercise. Interestingly, 5 min post-exercise termination, HR recovery was 13.0% faster following the music condition (p < 0.05) despite that music was not played during this period. These results strengthen the notion that music can alter the association between central motor drive, central cardiovascular command and perceived exertion, and contribute to prolonged exercise durations at higher intensities along with a quicken HR recovery.


Author(s):  
Cristina Cortis ◽  
Andrea Fusco ◽  
Mitchell Cook ◽  
Scott T. Doberstein ◽  
Cordial Gillette ◽  
...  

Although cycling class intensity can be modified by changing interval intensity sequencing, it has not been established whether the intensity order can alter physiological and perceptual responses. Therefore, this study aimed to determine the effects of interval intensity sequencing on energy expenditure (EE), physiological markers, and perceptual responses during indoor cycling. Healthy volunteers (10 males = 20.0 ± 0.8years; 8 females = 21.3 ± 2.7years) completed three randomly ordered interval bouts (mixed pyramid—MP, ascending intervals—AI, descending intervals—DI) including three 3-min work bouts at 50%, 75%, and 100% of peak power output (PPO) and three 3-min recovery periods at 25% PPO. Heart rate (HR) and oxygen consumption (VO2) were expressed as percentages of maximal HR (%HRmax) and VO2 (%VO2max). EE was computed for both the work bout and for the 5-min recovery period. Session Rating of Perceived Exertion (sRPE) and Exercise Enjoyment Scale (EES) were recorded. No differences emerged for % HRmax (MP = 73.3 ± 6.1%; AI = 72.1 ± 4.9%; DI = 71.8 ± 4.5%), % VO2max (MP = 51.8 ± 4.6%; AI = 51.4 ± 3.9%; DI = 51.3 ± 4.5%), EE (MP = 277.5 ± 39.9 kcal; AI = 275.8 ± 39.4 kcal; DI = 274.9 ± 42.1 kcal), EES (MP = 4.9 ± 1.0; AI = 5.3 ± 1.1; DI = 4.9 ± 0.9), and sRPE (MP = 4.9 ± 1.0; AI = 5.3 ± 1.1; DI = 4.9 ± 0.9). EE during recovery was significantly (p < 0.005) lower after DI (11.9 ± 3.2 kcal) with respect to MP (13.2 ± 2.5 kcal) and AI (13.3 ± 2.5 kcal). Although lower EE was observed during recovery in DI, interval intensity sequencing does not affect overall EE, physiological markers, and perceptual responses.


2017 ◽  
Vol 12 (10) ◽  
pp. 1370-1377 ◽  
Author(s):  
Yusuf Köklü ◽  
Utku Alemdaroğlu ◽  
Hamit Cihan ◽  
Del P. Wong

Purpose: To investigate the effects of different bout durations on internal and external loads of young soccer players during different small-sided games (SSGs). Methods: Fifteen young male soccer players (average age 17 ± 1 y) participated in 2 vs 2, 3 vs 3, and 4 vs 4 SSGs. All games lasted 12 min playing time in total, but each SSG format further consisted of 4 bout durations: continuous (CON: 1 bout × 12 min) or interval with short (SBD: 6 bouts  × 2 min), medium (MBD: 3 bouts × 4 min), or long (LBD: 2 bouts × 6 min) bout durations. During the SSGs, heart-rate (HR) responses and distance covered in different speed zones (walking and low-intensity, moderate-intensity, and high-intensity running) were measured. Rating of perceived exertion (RPE) and blood lactate (La−) were determined at the end of each SSG. Results: The SBD format elicited significantly lower %HRmax responses compared to LBD and CON in all formats (P < .05). The SBD format also showed significantly shorter distances covered in walking and greater distances covered in moderate-intensity running, as well as significantly greater total distance covered compared to LBD and CON in all formats (P < .05). In addition, LBD produced significantly lower La− and RPE responses than SBD and CON in all formats (P < .05). Conclusions: These results suggest that coaches and sport scientists who want to achieve higher internal loads could use SBD and CON timing protocols, while those who want to achieve higher external loads might prefer to use SBD and MBD when planning all SSG formats.


2018 ◽  
Vol 13 (7) ◽  
pp. 940-946 ◽  
Author(s):  
Farhan Juhari ◽  
Dean Ritchie ◽  
Fergus O’Connor ◽  
Nathan Pitchford ◽  
Matthew Weston ◽  
...  

Context: Team-sport training requires the daily manipulation of intensity, duration, and frequency, with preseason training focusing on meeting the demands of in-season competition and training on maintaining fitness. Purpose: To provide information about daily training in Australian football (AF), this study aimed to quantify session intensity, duration, and intensity distribution across different stages of an entire season. Methods: Intensity (session ratings of perceived exertion; CR-10 scale) and duration were collected from 45 professional male AF players for every training session and game. Each session’s rating of perceived exertion was categorized into a corresponding intensity zone, low (<4.0 arbitrary units), moderate (≥4.0 and <7.0), and high (≥7.0), to categorize session intensity. Linear mixed models were constructed to estimate session duration, intensity, and distribution between the 3 preseason and 4 in-season periods. Effects were assessed using linear mixed models and magnitude-based inferences. Results: The distribution of the mean session intensity across the season was 29% low intensity, 57% moderate intensity, and 14% high intensity. While 96% of games were high intensity, 44% and 49% of skills training sessions were low intensity and moderate intensity, respectively. Running had the highest proportion of high-intensity training sessions (27%). Preseason displayed higher training-session intensity (effect size [ES] = 0.29–0.91) and duration (ES = 0.33–1.44), while in-season game intensity (ES = 0.31–0.51) and duration (ES = 0.51–0.82) were higher. Conclusions: By using a cost-effective monitoring tool, this study provides information about the intensity, duration, and intensity distribution of all training types across different phases of a season, thus allowing a greater understanding of the training and competition demands of Australian footballers.


2019 ◽  
Vol 44 (4) ◽  
pp. 348-356 ◽  
Author(s):  
Ariane Aparecida Viana ◽  
Bianca Fernandes ◽  
Cristian Alvarez ◽  
Guilherme Veiga Guimarães ◽  
Emmanuel Gomes Ciolac

We tested the hypothesis that rating of perceived exertion (RPE) is a tool as efficient as the heart rate (HR) response to the cardiopulmonary exercise test (CPX) for prescribing and self-regulating high-intensity interval exercise (HIIE), and that metabolic and hemodynamic response to HIIE is superior than to continuous moderate-intensity exercise (MICE) in individuals with type 2 diabetes mellitus (T2DM). Eleven participants (age = 52.3 ± 3 years) underwent HIIE prescribed and self-regulated by RPE (HIIERPE; 25 min), HIIE prescribed and regulated by an individual’s HR response to CPX (HIIEHR; 25 min), MICE prescribed and self-regulated by RPE (30 min) and control (30 min of seated resting) intervention in random order. HR, blood pressure (BP), capillary glucose, endothelial reactivity, and carotid-femoral pulse wave velocity were assessed before, immediately after, and 45 min after each intervention. Exercise HR, speed, and distance were measured during exercise sessions. Twenty-four-hour ambulatory BP was measured after each intervention. Exercise HR, speed, and distance were similar between HIIERPE and HIIEHR. BP response was not different among HIIERPE, HIIEHR, and MICE. Capillary glycaemia reduction was greater (P < 0.05) after HIIERPE (48.6 ± 9.6 mg/dL) and HIIEHR (47.2 ± 9.5 mg/dL) than MICE (29.5 ± 11.5 mg/dL). Reduction (P < 0.05) in 24-h (6.7 ± 2.2 mm Hg) and tendency toward reduction (P = 0.06) in daytime systolic (7.0 ± 2.5 mm Hg) ambulatory BP were found only after HIIERPE. These results suggest that HIIE is superior to MICE for reducing glycaemia and ambulatory BP, and that the 6–20 RPE scale is a useful tool for prescribing and self-regulating HIIE in individuals with T2DM.


2021 ◽  
Author(s):  
Geoffrey M Minett ◽  
Valentin Fels-Camilleri ◽  
Joshua J Bon ◽  
Franco Milko Impellizzeri ◽  
David N Borg

Objectives: This study aimed to examine the effect of peer presence on the session rating of perceived exertion (RPE) responses. Design: Within-participant design. Method: Fourteen males, with mean (standard deviation) age 22.4 (3.9) years, peak oxygen uptake 48.0 (6.6) mL·kg-1·min-1 and peak power output 330 (44) W, completed an incremental cycling test and three identical experimental sessions, in groups of four or five. Experimental sessions involved 24 min of cycling, whereby the work rate alternated between 40% and 70% peak power output every 3 min. During cycling, heart rate was collected every 3 min, and session-RPE was recorded 10 min after cycling, in three communication contexts: in written form unaccompanied (intrapersonal communication); verbally by the researcher only (interpersonal communication); and in the presence of the training group. Session-RPE was analysed using ordinal regression and heart rate using a linear mixed-effects model, with models fit in a Bayesian framework. Results: Session-RPE was voted higher when collected in the group's presence compared to when written (odds ratio = 5.3, 95% credible interval = 1.6 to 17.6). On average, the posterior probability that session-RPE was higher in the group setting than when written was 0.57. Session-RPE was not different between the group and verbal, or verbal and written collection contexts. Conclusions: This study suggests contextual psychosocial inputs influence session-RPE, and highlights the importance of session-RPE users controlling the measurement environment when collecting votes.


2017 ◽  
Vol 56 (1) ◽  
pp. 127-137 ◽  
Author(s):  
Carolina Cabral-Santos ◽  
José Gerosa-Neto ◽  
Daniela S. Inoue ◽  
Fabrício E. Rossi ◽  
Jason M. Cholewa ◽  
...  

AbstractThe aim of this study was to investigate the physiological responses to moderate-intensity continuous and high-intensity intermittent exercise. Twelve physically active male subjects were recruited and completed a 5-km run on a treadmill in two experimental sessions in randomized order: continuously (70% sVO2max) and intermittently (1:1 min at sVO2max). Oxygen uptake, excess post-exercise oxygen consumption, lactate concentration, heart rate and rating of perceived exertion data were recorded during and after each session. The lactate levels exhibited higher values immediately post-exercise than at rest (High-Intensity: 1.43 ± 0.25 to 7.36 ± 2.78; Moderate-Intensity: 1.64 ± 1.01 to 4.05 ± 1.52 mmol⋅L−1, p = 0.0004), but High-Intensity promoted higher values (p = 0.001) than Moderate-Intensity. There was a difference across time on oxygen uptake at all moments tested in both groups (High-Intensity: 100.19 ± 8.15L; Moderate-Intensity: 88.35 ± 11.46, p < 0.001). Both exercise conditions promoted increases in excess postexercise oxygen consumption (High-Intensity: 6.61 ± 1.85 L; Moderate-Intensity: 5.32 ± 2.39 L, p < 0.005), but higher values were observed in the High-Intensity exercise protocol. High-Intensity was more effective at modifying the heart rate and rating of perceived exertion (High-Intensity: 183 ± 12.54 and 19; Moderate-Intensity: 172 ± 8.5 and 16, respectively, p < 0.05). In conclusion, over the same distance, Moderate-Intensity and High-Intensity exercise exhibited different lactate concentrations, heart rate and rating of perceived exertion. As expected, the metabolic contribution also differed, and High-Intensity induced higher energy expenditure, however, the total duration of the session may have to be taken into account. Moreover, when following moderate-intensity training, the percentage of sVO2max and the anaerobic threshold might influence exercise and training responses.


2017 ◽  
Vol 12 (9) ◽  
pp. 1192-1198 ◽  
Author(s):  
Jamie Highton ◽  
Thomas Mullen ◽  
Craig Twist

Purpose:To examine the influence of knowledge of exercise duration on pacing and performance during simulated rugby league match play. Methods:Thirteen male university rugby players completed 3 simulated rugby league matches (RLMSP-i) on separate days in a random order. In a control trial, participants were informed that they would be performing 2 × 23-min bouts (separated by 20 min) of the RLMSP-i (CON). In a second trial, participants were informed that they would be performing 1 × 23-min bout of the protocol but were then asked to perform another 23-min bout (DEC). In a third trial, participants were not informed of the exercise duration and performed 2 × 23-min bouts (UN). Results:Distance covered and high-intensity running were higher in CON (4813 ± 167 m, 26 ± 4.1 m/min) than DEC (4764 ± 112 m, 25.2 ± 2.8 m/min) and UN (4744 ± 131 m, 24.4 m/min). Compared with CON, high-intensity running and peak speed were typically higher for DEC in bout 1 and lower in bout 2 of the RLMSP-i, while UN was generally lower throughout. Similarly, DEC resulted in an increased heart rate, blood lactate, and rating of perceived exertion than CON in bout 1, whereas these variables were lower throughout the protocol in UN. Conclusions:Pacing and performance during simulated rugby league match play depend on an accurate understanding of the exercise endpoint. Applied practitioners should consider informing players of their likely exercise duration to maximize running.


2020 ◽  
Vol 15 (6) ◽  
pp. 825-832 ◽  
Author(s):  
Davide Ferioli ◽  
Diego Rucco ◽  
Ermanno Rampinini ◽  
Antonio La Torre ◽  
Marco M. Manfredi ◽  
...  

Purpose: To examine the physiological, physical, and technical demands of game-based drills (GBDs) with regular dribble (RD) or no dribble (ND) involving a different number of players (3 vs 3, 4 vs 4, and 5 vs 5). Methods: Ten regional-level male basketball players performed 6 full-court GBD formats (each consisting of 3 bouts of 4 min and 2 min rest) on multiple occasions. The physiological and perceptual responses were measured through heart rate and rating of perceived exertion. Video-based time–motion analysis was performed to assess the GBD physical demands. The frequencies of occurrence and the duration were calculated for high-intensity, moderate-intensity, low-intensity, and recovery activities. Technical demands were assessed with a notional-analysis technique. A 2-way repeated-measures analysis of variance was used to assess statistical differences between GBD formats. Results: A greater perceptual response (rating of perceived exertion) was recorded during 3 versus 3 than 5 versus 5 formats (P = .005). Significant interactions were observed for the number of recovery (P = .021), low-intensity activity (P = .007), and all movements (P = .001) completed. Greater time was spent performing low-intensity and high-intensity activities during RD than ND format. Greater technical demands were observed for several variables during 3 versus 3 than 4 versus 4 or 5 versus 5. A greater number of turnovers (P = .027), total (P ≤ .001), and correct passes (P ≤ .001) were recorded during ND than RD format. Conclusions: The number of players predominantly affected the perceptual response to GBD, while both the number of players and rule modification (RD vs ND) affected activities performed during GBD. Reducing the number of players increases the GBD technical elements, while ND format promotes a greater number of turnovers and passes.


Sign in / Sign up

Export Citation Format

Share Document