scholarly journals Exploring genetic programming systems with MAP-Elites

Author(s):  
Emily Dolson ◽  
Alexander Lalejini ◽  
Charles Ofria

MAP-Elites is an evolutionary computation technique that has proven valuable for exploring and illuminating the genotype-phenotype space of a computational problem. In MAP-Elites, a population is structured based on phenotypic traits of prospective solutions; each cell represents a distinct combination of traits and maintains only the most fit organism found with those traits. The resulting map of trait combinations allows the user to develop a better understanding of how each trait relates to fitness and how traits interact. While MAP-Elites has not been demonstrated to be competitive for identifying the optimal Pareto front, the insights it provides do allow users to better understand the underlying problem. In particular, MAP-Elites has provided insight into the underlying structure of problem representations, such as the value of connection cost or modularity to evolving neural networks. Here, we extend the use of MAP-Elites to examine genetic programming representations, using aspects of program architecture as traits to explore. We demonstrate that MAP-Elites can generate programs with a much wider range of architectures than other evolutionary algorithms do (even those that are highly successful at maintaining diversity), which is not surprising as this is the purpose of MAP-Elites. Ultimately, we propose that MAP-Elites is a useful tool for understanding why genetic programming representations succeed or fail and we suggest that it should be used to choose selection techniques and tune parameters.

Author(s):  
Emily Dolson ◽  
Alexander Lalejini ◽  
Charles Ofria

MAP-Elites is an evolutionary computation technique that has proven valuable for exploring and illuminating the genotype-phenotype space of a computational problem. In MAP-Elites, a population is structured based on phenotypic traits of prospective solutions; each cell represents a distinct combination of traits and maintains only the most fit organism found with those traits. The resulting map of trait combinations allows the user to develop a better understanding of how each trait relates to fitness and how traits interact. While MAP-Elites has not been demonstrated to be competitive for identifying the optimal Pareto front, the insights it provides do allow users to better understand the underlying problem. In particular, MAP-Elites has provided insight into the underlying structure of problem representations, such as the value of connection cost or modularity to evolving neural networks. Here, we extend the use of MAP-Elites to examine genetic programming representations, using aspects of program architecture as traits to explore. We demonstrate that MAP-Elites can generate programs with a much wider range of architectures than other evolutionary algorithms do (even those that are highly successful at maintaining diversity), which is not surprising as this is the purpose of MAP-Elites. Ultimately, we propose that MAP-Elites is a useful tool for understanding why genetic programming representations succeed or fail and we suggest that it should be used to choose selection techniques and tune parameters.


1979 ◽  
Vol 16 (01) ◽  
pp. 198-202 ◽  
Author(s):  
L. Billard ◽  
H. Lacayo ◽  
N. A. Langberg

Classical epidemic models have invariably proved to be mathematically intractable. By considering the distribution of the number of infectives in a simple epidemic process as a convolution of exponential waiting times, the solution to the classical model is obtained easily giving more insight into the underlying structure. The idea can be extended to other simple epidemic models.


2006 ◽  
Vol 6 ◽  
pp. 992-997 ◽  
Author(s):  
Alison M. Kerr

More than 20 years of clinical and research experience with affected people in the British Isles has provided insight into particular challenges for therapists, educators, or parents wishing to facilitate learning and to support the development of skills in people with Rett syndrome. This paper considers the challenges in two groups: those due to constraints imposed by the disabilities associated with the disorder and those stemming from the opportunities, often masked by the disorder, allowing the development of skills that depend on less-affected areas of the brain. Because the disorder interferes with the synaptic links between neurones, the functions of the brain that are most dependent on complex neural networks are the most profoundly affected. These functions include speech, memory, learning, generation of ideas, and the planning of fine movements, especially those of the hands. In contrast, spontaneous emotional and hormonal responses appear relatively intact. Whereas failure to appreciate the physical limitations of the disease leads to frustration for therapist and client alike, a clear understanding of the better-preserved areas of competence offers avenues for real progress in learning, the building of satisfying relationships, and achievement of a quality of life.


Entropy ◽  
2020 ◽  
Vol 22 (12) ◽  
pp. 1365
Author(s):  
Bogdan Muşat ◽  
Răzvan Andonie

Convolutional neural networks utilize a hierarchy of neural network layers. The statistical aspects of information concentration in successive layers can bring an insight into the feature abstraction process. We analyze the saliency maps of these layers from the perspective of semiotics, also known as the study of signs and sign-using behavior. In computational semiotics, this aggregation operation (known as superization) is accompanied by a decrease of spatial entropy: signs are aggregated into supersign. Using spatial entropy, we compute the information content of the saliency maps and study the superization processes which take place between successive layers of the network. In our experiments, we visualize the superization process and show how the obtained knowledge can be used to explain the neural decision model. In addition, we attempt to optimize the architecture of the neural model employing a semiotic greedy technique. To the extent of our knowledge, this is the first application of computational semiotics in the analysis and interpretation of deep neural networks.


Author(s):  
Shicheng Li ◽  
James Yang ◽  
Wei Liu

Abstract A spillway discharging a high-speed flow is susceptible to cavitation damages. As a countermeasure, an aerator is often used to artificially entrain air into the flow. Its air demand is of relevance to cavitation reduction and requires accurate estimations. The main contribution of this study is to establish an embedded multi-gene genetic programming (EMGGP) model for improved prediction of air demand. It is an MGGP-based framework coupled with the gene expression programming acting as a pre-processing technique for input determination and the Pareto front serving as a post-processing measure for solution optimization. Experimental data from a spillway aerator are used to develop and validate the proposed technique. Its performance is statistically evaluated by the coefficient of determination (CD), Nash–Sutcliffe coefficient (NSC), root-mean-square error (RMSE) and mean absolute error (MAE). Satisfactory predictions are yielded with CD = 0.95, NSC = 0.94, RMSE = 0.17 m3/s and MAE = 0.12 m3/s. Compared with the best empirical formula, the EMGGP approach enhances the fitness (CD and NSC) by 23% and reduces the errors (RMSE and MAE) by 48%. It also exhibits higher prediction accuracy and a simpler expressional form than the genetic programming solution. This study provides a procedure for the establishment of parameter relationships for similar hydraulic issues.


2019 ◽  
Author(s):  
Ranjani Murali ◽  
James Hemp ◽  
Victoria Orphan ◽  
Yonatan Bisk

AbstractThe ability to correctly predict the functional role of proteins from their amino acid sequences would significantly advance biological studies at the molecular level by improving our ability to understand the biochemical capability of biological organisms from their genomic sequence. Existing methods that are geared towards protein function prediction or annotation mostly use alignment-based approaches and probabilistic models such as Hidden-Markov Models. In this work we introduce a deep learning architecture (FunctionIdentification withNeuralDescriptions orFIND) which performs protein annotation from primary sequence. The accuracy of our methods matches state of the art techniques, such as protein classifiers based on Hidden Markov Models. Further, our approach allows for model introspection via a neural attention mechanism, which weights parts of the amino acid sequence proportionally to their relevance for functional assignment. In this way, the attention weights automatically uncover structurally and functionally relevant features of the classified protein and find novel functional motifs in previously uncharacterized proteins. While this model is applicable to any database of proteins, we chose to apply this model to superfamilies of homologous proteins, with the aim of extracting features inherent to divergent protein families within a larger superfamily. This provided insight into the functional diversification of an enzyme superfamily and its adaptation to different physiological contexts. We tested our approach on three families (nitrogenases, cytochromebd-type oxygen reductases and heme-copper oxygen reductases) and present a detailed analysis of the sequence characteristics identified in previously characterized proteins in the heme-copper oxygen reductase (HCO) superfamily. These are correlated with their catalytic relevance and evolutionary history. FIND was then applied to discover features in previously uncharacterized members of the HCO superfamily, providing insight into their unique sequence features. This modeling approach demonstrates the power of neural networks to recognize patterns in large datasets and can be utilized to discover biochemically and structurally important features in proteins from their amino acid sequences.Author summary


2016 ◽  
Vol 113 (9) ◽  
pp. 2526-2531 ◽  
Author(s):  
Sibongile Mafu ◽  
Meirong Jia ◽  
Jiachen Zi ◽  
Dana Morrone ◽  
Yisheng Wu ◽  
...  

The substrate specificity of enzymes from natural products’ metabolism is a topic of considerable interest, with potential biotechnological use implicit in the discovery of promiscuous enzymes. However, such studies are often limited by the availability of substrates and authentic standards for identification of the resulting products. Here, a modular metabolic engineering system is used in a combinatorial biosynthetic approach toward alleviating this restriction. In particular, for studies of the multiply reactive cytochrome P450, ent-kaurene oxidase (KO), which is involved in production of the diterpenoid plant hormone gibberellin. Many, but not all, plants make a variety of related diterpenes, whose structural similarity to ent-kaurene makes them potential substrates for KO. Use of combinatorial biosynthesis enabled analysis of more than 20 such potential substrates, as well as structural characterization of 12 resulting unknown products, providing some insight into the underlying structure–function relationships. These results highlight the utility of this approach for investigating the substrate specificity of enzymes from complex natural products’ biosynthesis.


Sign in / Sign up

Export Citation Format

Share Document