scholarly journals Species interactions involving cushion plants in high-elevation environments under a changing climate

Ecosistemas ◽  
2021 ◽  
Vol 30 (1) ◽  
pp. 2186
Author(s):  
Francisco I. Pugnaire ◽  
Gianalberto Losapio ◽  
Christian Schöb

The effects of global warming are stronger in high-elevation environments than elsewhere. Here, we review recent advances in alpine plant ecology with a focus on dry mountain ranges, mainly in Mediterranean-type climate, with a global change perspective. Raising temperatures and changes in precipitation influence both plant growth and reproduction, and therefore the spatial distribution of species. Research in high-elevation systems evidenced that plant–plant interactions involving cushion plants play a crucial role in the assembly of plant communities, influencing species richness, genetic and phylogenetic diversity, and species persistence. By buffering environmental extremes and ameliorating biophysical conditions, cushion plant species acting as ecosystem engineers are fundamental in the response of alpine ecosystems to global warming, mitigating negative impacts on different plant species with narrow niche and small distribution range.

Botany ◽  
2012 ◽  
Vol 90 (4) ◽  
pp. 273-282 ◽  
Author(s):  
Christopher J. Lortie ◽  
Anya M. Reid

The term facilitation generally describes positive interactions between plants, and a common approach in these studies is to identify a dominant plant to structure sampling. Unfortunately, whilst this field has rapidly expanded community ecology, it rarely includes other trophic levels such as insects and pollinators. Here, we combine facilitation, pollination, and reciprocity measures to explore the general hypothesis that sexual dimorphism in a benefactor plant species mediates its impact. The following three predictions were tested and supported using the gynodioecious alpine cushion plant Silene acaulis (L.) Jacq.: (i) that the trait set of a gynodioecious benefactor plant varies between genders; (ii) that dimorphism changes the facilitation of other plants, arthropods, and pollinators; and (iii) that insect selectivity, particularly pollinators, reciprocally impacts the reproductive output of the two genders. Female S. acaulis cushion plants produced significantly more flowers but they were smaller than those of hermaphrodites. Hermaphrodite cushions facilitated other plant species and pollinators more effectively than females, whilst females strongly facilitated more arthropods. Finally, female plants have significantly higher reproductive output as estimated by fruit and seed production, and this was directly related to visitation rate by pollinators. Hence, this study clearly establishes the value of combining some of the common themes of pollination biology such as sexual dimorphism, floral morphology, and measuring reproduction with the study of positive plant–plant interactions.


2019 ◽  
Author(s):  
Liubov Zakharova ◽  
Katrin M Meyer ◽  
Merav Seifan

Trait-based approaches are an alternative to species-based approaches for functionally linking individual organisms with community structure and dynamics. In the trait‑based approach, the focus is on the traits, the physiological, morphological, or life-history characteristics, of organisms rather than their species. Although used in ecological research for several decades, this approach only emerged in ecological modelling about twenty years ago. We review this rise of trait-based models and trace the occasional transfer of trait-based modelling concepts between terrestrial plant ecology, animal and microbial ecology, and aquatic ecology. Trait-based models have a variety of purposes, such as predicting changes in species distribution patterns under climate and land-use change, planning and assessing conservation management, or studying invasion processes. In modelling, trait-based approaches can reduce technical challenges such as computational limitations, scaling problems, and data scarcity. However, we note inconsistencies in the current usage of terms in trait-based approaches and these inconsistencies must be resolved if trait-based concepts are to be easily exchanged between disciplines. Specifically, future trait-based models may further benefit from incorporating intraspecific trait variability and addressing more complex species interactions. We also recommend expanding the combination of trait-based approaches with individual-based modelling to simplify the parameterization of models, to capture plant-plant interactions at the individual level, and to explain community dynamics under global change.


2021 ◽  
Author(s):  
Aubrie R. M. James ◽  
Monica A Geber

Species interactions are foundational to ecological theory, but studies often reduce the complex nature of species interactions. In plant ecology, the result is that interactions during vegetative growth and flowering are considered separately, though both can affect fecundity. Here we use a system of annual flowering plants in the genus Clarkia to ask how interactions during flowering and growth contribute to plant interactions, and if pollinator behaviors explain apparent patterns in plant interactions during flowering. We measure seed success and fecundity of Clarkia focal plants in experimental interaction plots with the effect of pollinators experimentally removed or retained. We also observe pollinator behaviors in the plots and experimental arrays. During flowering, pollinators significantly changed the effect of Clarkia interactions on seed success in 31% of species interactions, and these changes corresponded to pollinator behaviors. Whole-plant fecundity, however, did not depend on interactions between Clarkia; instead, non-Clarkia forbs that grew earlier in the season limited fecundity, constituting a priority effect during vegetative growth. Our study shows that interactions during vegetative growth can preclude the effect of pollinator-mediated interactions on fecundity by limiting potential reproductive output, and that simultaneously studying different modes of interaction allows for understanding the contingency of ecological outcomes.


2021 ◽  
Vol 12 ◽  
Author(s):  
Weiling Niu ◽  
Hui Chen ◽  
Jianshuang Wu

Changing precipitation and temperature are principal drivers for nutrient cycling dynamics in drylands. Foliar isotopic carbon (C) and nitrogen (N) composition (δ13C and δ15N) are often used to describe the plant’s water use efficiency and nitrogen use strategy in plant ecology research. However, the drivers and mechanisms under differential foliar δ13C and δ15N among plant species and communities are largely unknown for arid high-elevation regions. This study collected 462 leaf samples of ten top-dominant plant species (two or three replicates per species) across 16 sites in 2005 and 2010 to measure the community-weighted means (CWMs) of foliar δ13C and δ15N, northeastern Qaidam Basin, Qinghai-Tibetan Plateau. Our results showed that the CWM of foliar δ15N was higher in 2005 than in 2010 and was lower in the warm-dry season (July and August) than the cool-wet one (June and September) in 2010. Similarly, the CWM of foliar δ13C was higher in 2005 than in 2010, but no difference between warm-dry and cool-wet seasons in 2010. C4 plants have higher δ13C and generally grow faster than C3 species under warm-wet weathers. This might be why the CWM of foliar δ13C was high, while the CWM of foliar δ15N was low in the wet sampling year (2010). The general linear mixed models revealed that soil moisture was the most critical driver for the CWM of foliar δ15N, which explained 42.1% of the variance alone. However, the total soluble salt content was the crucial factor for the CWM of foliar δ13C, being responsible for 29.7% of the variance. Growing season temperature (GST) was the second most vital factor and explained 28.0% and 21.9% of the variance in the CWMs of foliar δ15N and δ13C. Meanwhile, remarkable differences in the CWMs of foliar δ15N and δ13C were also found at the species level. Specifically, Kalidium gracile and Salsola abrotanoides have higher foliar δ15N, while Ephedra sinica and Tamarix chinensis have lower foliar δ15N than other species. The foliar δ13C of Calligonum Kozlov and H. ammodendron was the highest among the ten species. Except for the foliar δ13C of E. sinica was higher than Ceratoide latens between the two sampling years or between the cool-wet and warm-dry seasons, no significant difference in foliar δ13C was found for other species. Overall, the CWMs of foliar δ15N and δ13C dynamics were affected by soil properties, wet-dry climate change, and species identity in high-elevation deserts on the Qinghai Tibetan Plateau.


Web Ecology ◽  
2010 ◽  
Vol 10 (1) ◽  
pp. 44-49 ◽  
Author(s):  
A. M. Reid ◽  
L. J. Lamarque ◽  
C. J. Lortie

Abstract. Cushion-forming plant species are found in alpine and polar environments around the world. They modify the microclimate, thereby facilitating other plant species. Similar to the effectiveness of shrubs as a means to study facilitation in arid and semi-arid environments, we explore the potential for cushion plant species to expand the generality of research on this contemporary ecological interaction. A systematic review was conducted to determine the number of publications and citation frequency on relevant ecological topics whilst using shrub literature as a baseline to assess relative importance of cushions as a focal point for future ecological research. Although there are forty times more shrub articles, mean citations per paper is comparable between cushion and shrub literature. Furthermore, the scope of ecological research topics studied using cushions is broad including facilitation, competition, environmental gradients, life history, genetics, reproduction, community, ecosystem and evolution. The preliminary ecological evidence to date also strongly suggests that cushion plants can be keystone species in their ecosystems. Hence, ecological research on net interactions including facilitation and patterns of diversity can be successfully examined using cushion plants, and this is particularly timely given expectations associated with a changing climate in these regions.


2019 ◽  
Author(s):  
Liubov Zakharova ◽  
Katrin M Meyer ◽  
Merav Seifan

Trait-based approaches are an alternative to species-based approaches for functionally linking individual organisms with community structure and dynamics. In the trait‑based approach, the focus is on the traits, the physiological, morphological, or life-history characteristics, of organisms rather than their species. Although used in ecological research for several decades, this approach only emerged in ecological modelling about twenty years ago. We review this rise of trait-based models and trace the occasional transfer of trait-based modelling concepts between terrestrial plant ecology, animal and microbial ecology, and aquatic ecology. Trait-based models have a variety of purposes, such as predicting changes in species distribution patterns under climate and land-use change, planning and assessing conservation management, or studying invasion processes. In modelling, trait-based approaches can reduce technical challenges such as computational limitations, scaling problems, and data scarcity. However, we note inconsistencies in the current usage of terms in trait-based approaches and these inconsistencies must be resolved if trait-based concepts are to be easily exchanged between disciplines. Specifically, future trait-based models may further benefit from incorporating intraspecific trait variability and addressing more complex species interactions. We also recommend expanding the combination of trait-based approaches with individual-based modelling to simplify the parameterization of models, to capture plant-plant interactions at the individual level, and to explain community dynamics under global change.


2021 ◽  
Vol 232 (7) ◽  
Author(s):  
N. Matanzas ◽  
E. Afif ◽  
T. E. Díaz ◽  
J. R. Gallego

AbstractPhytomanagement techniques using native species allow the recovery of contaminated soils at low cost and circumvent the ecological risks associated with the use of non-native species. In this context, a paradigmatic brownfield megasite highly contaminated by As and Pb was sampled in order to analyze soil–plant interactions and identify plant species with phytoremediation potential. A survey was first carried out in a 20-ha area to obtain an inventory of species growing spontaneously throughout the site. We then performed another survey in the most polluted sub-area (1 ha) within the site. Pseudototal concentrations of contaminants in the soil, aerial parts of the plants, and roots were measured by ICP-MS. A detailed habitat classification was done, and a specific index of coverage was applied by means of a 1-year quadrat study in various sampling stations. Results converged in the selection of six herbaceous species (Dysphania botrys, Lotus corniculatus, Lotus hispidus, Plantago lanceolata, Trifolium repens, Medicago lupulina). All of these plants are fast-growing, thereby making them suitable for use in phytostabilization strategies. Furthermore, they are all easy to grow and propagate and are generally self-sustaining. All six plants showed accumulation factors below 1, thus revealing them as pseudomethallophytes and excluders. However, L. hispidus and M. lupulina showed translocation capacity and are considered worthy of further study.


Plant Ecology ◽  
2010 ◽  
Vol 212 (4) ◽  
pp. 595-600 ◽  
Author(s):  
Angela Stanisci ◽  
Maria Laura Carranza ◽  
Giovanni Pelino ◽  
Alessandro Chiarucci

2016 ◽  
Vol 11 (1) ◽  
pp. 27
Author(s):  
Arif Dwi Santoso ◽  
Abdil H.S ◽  
Diyono .

Global warming has become an increasingly important issue around the world today due to the rise of anthropogenic greenhouse gases emission, which gives several negative impacts on human life. There are some techniques have been studied and assessed i.e. physical mechanism by injected CO2 to the geological formations, chemical mechanism with artificial tree technology and biological mechanism by increasing the primary production through iron enrichment in high nutrient-low chlorophyll (HNLC) waters as well as mixing of water column below the sea surface. Those technologies, which are well known as Carbon Capture Storage ‘(CCS) technology, are expected to be applied to reduce the oncentration of anthropogenic CO2 in the atmosphere and to minimize the global warming. The Center of Environmental Technology, Agency for the Assessment and Application of Technology (BPPT) will carry out a research concerning CO2 reduction by a phytoplankton culture in a photobioreactor in three years. The main objective of this research is to assess the CO2 uptake capability of tropical phytoplankton. In this paper, we would showed the creteria and design to assembly a photobioreactor esspesially a air lift photobioreactor. To improve performance photobioreaktor, the materials included design criteria and the dynamics of fluids in fotobioreaktor have to considered propoerly. Other the hand, the selection of the most productive species and selection of appropriate media and economically also important to be done. Keywords: global warming, creteria and design, greenhouse gas, air lift photobioreactor


Sign in / Sign up

Export Citation Format

Share Document