scholarly journals An Integrated Multi-Echelon Supply Chain Network Design Considering Stochastic Demand: A Genetic Algorithm Based Solution

2017 ◽  
Vol 29 (4) ◽  
pp. 391-400 ◽  
Author(s):  
Sara Nakhjirkan ◽  
Farimah Mokhatab Rafiei

The growing trend of natural resources consumption has caused irreparable losses to the environment. The scientists believe that if environmental degradation continues at its current pace, the prospect of human life will be shrouded in mystery. One of the most effective ways to deal with the environmental adverse effects is by implementing green supply chains. In this study a multilevel mathematical model including supply, production, distribution and customer levels has been presented for routing–location–inventoryin green supply chain. Vehicle routing between distribution centres and customers has been considered in the model. Establishment place of distribution centres among potential places is determined by the model. The distributors use continuous review policy (r, Q) to control the inventory. The proposed model object is to find an optimal supply chain with minimum costs. To validate the proposed model and measure its compliance with real world problems, GAMS IDE/Cplex has been used. In order to measure the efficiency of the proposed model in large scale problems, a genetic algorithm has been used. The results confirm the efficiency of the proposed model as a practical tool for decision makers to solve location-inventory-routing problems in green supply chain. The proposed GA could reduce the solving time by 85% while reaching on the average 97% of optimal solution compared with exact method.

2021 ◽  
pp. 1-14
Author(s):  
Katayoun Naderi ◽  
Roya M. Ahari ◽  
Javid Jouzdani ◽  
Atefeh Amindoust

Fierce competition in the global markets forced companies to improve the design and management of supply chains, because companies are always looking for more profit and higher customer satisfaction. The emergence of the green supply chain is one of the most important developments of the last decade. It provides an opportunity for companies to adjust their supply chains according to environmental goals and sustainability. The integrated production-inventory-routing is a new field that aims to optimize these three decision-making levels. It can be described as follow: a factory produces one or more products, and sells them to several customers (by direct delivery or a specific customer chain). The current study aims to model a production-inventory-routing system using a system dynamics approach to design a green supply chain under uncertain conditions. For this purpose, first, the association between selected variables was determined. Then, the proposed model was validated. Finally, to identify variables with the highest influence, four scenarios were developed. The results indicated that minimum total transportation cost, the total warehouse capacity of the supply chain, and the maximum production rate are the most influential strategies to achieve ideal condition.


2018 ◽  
Vol 13 (3) ◽  
pp. 605-625 ◽  
Author(s):  
Mohammad Khalilzadeh ◽  
Hadis Derikvand

Purpose Globalization of markets and pace of technological change have caused the growing importance of paying attention to supplier selection problem. Therefore, this study aims to choose the best suppliers by providing a mathematical model for the supplier selection problem considering the green factors and stochastic parameters. This paper aims to propose a multi-objective model to identify optimal suppliers for a green supply chain network under uncertainty. Design/methodology/approach The objective of this model is to select suppliers considering total cost, total quality parts and total greenhouse gas emissions. Also, uncertainty is tackled by stochastic programming, and the multi-objective model is solved as a single-objective model by the LP-metric method. Findings Twelve numerical examples are provided, and a sensitivity analysis is conducted to demonstrate the effectiveness of the developed mathematical model. Results indicate that with increasing market numbers and final product numbers, the total objective function value and run time increase. In case that decision-makers are willing to deal with uncertainty with higher reliability, they should consider whole environmental conditions as input parameters. Therefore, when the number of scenarios increases, the total objective function value increases. Besides, the trade-off between cost function and other objective functions is studied. Also, the benefit of the stochastic programming approach is proved. To show the applicability of the proposed model, different modes are defined and compared with the proposed model, and the results demonstrate that the increasing use of recyclable parts and application of the recycling strategy yield more economic savings and less costs. Originality/value This paper aims to present a more comprehensive model based on real-world conditions for the supplier selection problem in green supply chain under uncertainty. In addition to economic issue, environmental issue is considered from different aspects such as selecting the environment-friendly suppliers, purchasing from them and taking the probability of defective finished products and goods from suppliers into account.


2020 ◽  
Vol 18 (4) ◽  
Author(s):  
Reza Babazadeh ◽  
Ali Sabbaghnia ◽  
Fatemeh Shafipour

: Blood and its products play an undeniable role in human life. In recent years, although both academics and practitioners have investigated blood-related problems, further enhancement is still warranted. In this study, a mixed-integer linear programming model was proposed for local blood supply chain management. A supply network, including temporary and fixed blood donation facilities, blood banks, and blood processing centers, was designed regarding the deteriorating nature of blood. The proposed model was applied in a real case in Urmia, Iran. The numerical results and sensitivity analysis of the key model parameters ensured the applicability of the proposed model.


Author(s):  
Bernard K.S. Cheung

Genetic algorithms have been applied in solving various types of large-scale, NP-hard optimization problems. Many researchers have been investigating its global convergence properties using Schema Theory, Markov Chain, etc. A more realistic approach, however, is to estimate the probability of success in finding the global optimal solution within a prescribed number of generations under some function landscapes. Further investigation reveals that its inherent weaknesses that affect its performance can be remedied, while its efficiency can be significantly enhanced through the design of an adaptive scheme that integrates the crossover, mutation and selection operations. The advance of Information Technology and the extensive corporate globalization create great challenges for the solution of modern supply chain models that become more and more complex and size formidable. Meta-heuristic methods have to be employed to obtain near optimal solutions. Recently, a genetic algorithm has been reported to solve these problems satisfactorily and there are reasons for this.


2019 ◽  
Vol 11 (7) ◽  
pp. 1872 ◽  
Author(s):  
Patchara Phochanikorn ◽  
Chunqiao Tan

Environmental concerns have globally driven the encouragement of green supply chain management. Accordingly, business and industrial organizations try to seek green supply chain strategies to respond to market pressure regarding corporate social responsibility. Green supplier selection is one of the practical strategies for modern enterprises. With the large-scale development of the palm oil products industry, green supplier selection technique is the key for decision making when dealing with mass information and possible risks of biased data. For instance, the preference of decision makers possibly causes a misleading decision, thus leading to unnecessary waste of resources. Therefore, the contribution of this paper is to apply the integrated multi-criteria decision method using the ‘fuzzy decision-making trial and evaluation laboratory’ (fuzzy DEMATEL) method to consider the cause and effect relationship and then using fuzzy analytic network process (fuzzy ANP) to assign the weight of each relevant criteria. The initial results are useful for strategic procurement planning. In the final step, we adopt the prospect theory to synthesize procurement’s psychological and behavioral factors when selecting green suppliers. The final result refers to the comprehensive prospect value to rank the eligible suppliers into orders. Moreover, the results of both sensitivity analysis and comparison method confirm that the proposed model is adequately realistic and robust.


2020 ◽  
Vol 12 (6) ◽  
pp. 2177
Author(s):  
Jun-Ho Huh ◽  
Jimin Hwa ◽  
Yeong-Seok Seo

A Hierarchical Subsystem Decomposition (HSD) is of great help in understanding large-scale software systems from the software architecture level. However, due to the lack of software architecture management, HSD documentations are often outdated, or they disappear in the course of repeated changes of a software system. Thus, in this paper, we propose a new approach for recovering HSD according to the intended design criteria based on a genetic algorithm to find an optimal solution. Experiments are performed to evaluate the proposed approach using two open source software systems with the 14 fitness functions of the genetic algorithm (GA). The HSDs recovered by our approach have different structural characteristics according to objectives. In the analysis on our GA operators, crossover contributes to a relatively large improvement in the early phase of a search. Mutation renders small-scale improvement in the whole search. Our GA is compared with a Hill-Climbing algorithm (HC) implemented by our GA operators. Although it is still in the primitive stage, our GA leads to higher-quality HSDs than HC. The experimental results indicate that the proposed approach delivers better performance than the existing approach.


2015 ◽  
Vol 713-715 ◽  
pp. 1579-1582
Author(s):  
Shao Min Zhang ◽  
Ze Wu ◽  
Bao Yi Wang

Under the background of huge amounts of data in large-scale power grid, the active power optimization calculation is easy to fall into local optimal solution, and meanwhile the calculation demands a higher processing speed. Aiming at these questions, the farmer fishing algorithm which is applied to solve the problem of optimal distribution of active load for coal-fired power units is used to improve the cloud adaptive genetic algorithm (CAGA) for speeding up the convergence phase of CAGA. The concept of cloud computing algorithm is introduced, and parallel design has been done through MapReduce graphs. This method speeds up the calculation and improves the effectiveness of the active load optimization allocation calculation.


2020 ◽  
Vol 12 (4) ◽  
pp. 1688 ◽  
Author(s):  
Theo Notteboom ◽  
Larissa van der Lugt ◽  
Niels van Saase ◽  
Steve Sel ◽  
Kris Neyens

Green supply chain management (GSCM) can be defined as the integration of environmental concerns into the inter-organizational practices of supply chain management (SCM). This paper analyzes the role of seaports in the greening of supply chains in two ways. First, the fields of action to pursue GSCM objectives in ports are identified and grouped. The proposed typology includes five groups of actions, i.e., green shipping; green port development and operations; green inland logistics; seaports and the circular economy; and, actions in the field of knowledge development and information sharing. In the empirical part of the paper, this typology is used to analyze green actions and initiatives developed by market players and port authorities in the Rhine–Scheldt Delta, the leading European port region in cargo throughput terms. This structured overview of green actions and initiatives shows that these ports are hotbeds for GSCM initiatives, but progress in some areas remains slows. The second part of the analysis focuses on the attitudes and perceptions of port-related actors towards the greening of port-related supply chains. A large-scale survey conducted in the Belgian and Dutch logistics and port industry reveals that greening has been put massively on the agenda by the firms between 2010 and now. The results give a clear view on the diverse drivers and impediments towards the greening of supply chains. In addition, one can still see a gap between words and actions. The survey further points to the role of governments as catalysts or soft enforcers for change, and calls for continuity and coherence in government policy. This paper is the first study providing a comprehensive analysis on initiatives, approaches, and perspectives of port-related actors in a specific multi-port region.


2006 ◽  
Vol 33 (3) ◽  
pp. 319-325 ◽  
Author(s):  
M H Afshar ◽  
A Afshar ◽  
M A Mariño ◽  
A A.S Darbandi

A model is developed for the optimal design of storm water networks. The model uses a genetic algorithm (GA) as the search engine and the TRANSPORT module of the US Environmental Protection Agency storm water management model version 4.4H (SWMM4.4H) as the hydraulic simulator. Two different schemes are used to formulate the problem with varying degrees of success in reaching a near-optimal solution. In the first scheme, the nodal elevations and pipe diameters are selected as the decision variables of the problem which were determined by the GA to produce the trial solutions. In the second scheme, only nodal elevations are optimized by the GA, and determination of pipe diameters is left to the TRANSPORT SWMM module. Simulation of the trial solutions in both methods is carried out by the TRANSPORT module of SWMM4.4H. The proposed model is applied to some benchmark examples, and the results are presented and compared with the existing results in the literature.Key words: genetic algorithm, optimal design, sewer network, SWMM.


Sign in / Sign up

Export Citation Format

Share Document