scholarly journals Assessing the Environmental Impact of the Self-propelled Bulk Carriage through LCA

2018 ◽  
Vol 30 (3) ◽  
pp. 257-266
Author(s):  
Miro Hegedić ◽  
Nedeljko Štefanić ◽  
Mladen Nikšić

Environmental sustainability of the transport sector is a highly important issue today. The European Commission has made a goal of delivering a minimum 60% reduction in greenhouse gas emissions from transport by 2050. Part of this reduction will come from the railway sector by making the maintenance processes more environmentally friendly. This paper presents the results of the environmental assessment of the self-propelled bulk carriage (SPBC), an innovative new product aiming to decrease the environmental impact of the railway maintenance processes. The life cycle assessment (LCA) methodology was used in the study, and environmental impact is given in five impact categories based on the CML 2001 method through three main modules of the self-propelled bulk carriage life cycle: upstream, core, and downstream. The novelty of the research includes the fact that this is the first life cycle assessment study done for the bulk carriage, as well in that the authors have proposed the use of a new functional unit in the category of freight railway vehicles. The biggest environmental impact of the self-propelled bulk carriage across all five categories is in the use and maintenance phase of its life cycle and mainly due to diesel fuel use. The SPBC uses significantly less fuel than a conventional diesel locomotive.

2018 ◽  
Vol 180 ◽  
pp. 01004
Author(s):  
Miro Hegedić ◽  
Nedeljko Štefanić ◽  
Mladen Nikšić

The railway sector plays an important role in the European transport sector and its environmental sustainability is a highly important issue today recognized by all the main stakeholders, including the European Commission. EU-28 railway transport network consisted of 220,000 km of railway lines in 2013. Such a big railway transport network requires maintenance. Maintenance of a railway infrastructure is a resource- and cost-demanding activity that has as well a considerable impact on the environment. This paper presents the results of the environmental assessment of an innovative new product which aims to decrease the environmental impact of the railway maintenance processes. Life cycle assessment methodology was used and results show that the biggest environmental impact, in all impact categories, is achieved in the use and maintenance phase. In the end, the normalized data of the environmental impact were presented using the standard functional unit for the freight trains: tonne for kilometre (tkm). Additionally, authors have compared two different functional units that could be used in Life cycle assessment of the self-propelled freight railway vehicles, proposing the use of the new functional unit: tonne for working hour (twh). Use of such customized functional unit is more appropriate because of the specific nature of work that selfpropelled bulk carriages have.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Cagla Keles ◽  
Fatih Yazicioglu

PurposeThe purpose of this paper is to identify the sustainability conditions of primary schools in Turkey within the scope of the life cycle assessment (LCA). It is aimed to develop optimum alternatives to reduce the environmental impact of primary schools and reach environmental sustainability targets of the sustainable development goals in Turkey.Design/methodology/approachFrom the construction project of 103 buildings located in Istanbul, 10 case buildings with various typical plans were chosen for analysis. The results regarding their life cycle energy and carbon emission for material production, operation and maintenance stages were calculated for a lifespan of 50 years. Results were evaluated and compared within the scope of environmental sustainability. Optimum alternatives for improving the environmental sustainability and performances of selected case buildings’ facades were developed, and the life cycle energy and carbon emission for proposed conditions were calculated. The obtained results were evaluated for current and proposed conditions.FindingsResults showed that reinforced concrete material contributes the most to the life cycle-embodied energy and CO2 emission of buildings. Cooling load increases the life cycle operational energy (LCOE) and CO2 emission of buildings. Using high-performance glazing significantly reduces LCOE and CO2 emission. Recycled and fiber-based materials have significant potential for reducing life cycle-embodied energy and CO2 emission.Originality/valueThis study has been developed in response to achieving sustainable development targets on public buildings in Turkey. In this regard, external walls of primary schools were analyzed within the scope of LCA and recommendations were made to contribute to the policies and regulations requested by the Government of Turkey. This study proves that alternative and novel materials have great potential for achieving sustainable public buildings. The study answers to questions about reducing the environmental impact of primary school buildings by using LCA approach with a holistic point of view.


Author(s):  
Galuh Zuhria Kautzar ◽  
◽  
Ishardita Pambudi Tama ◽  
Yeni Sumantri ◽  

The sugarcane industry is one of the industries that generated negatives impact on the environment. Therefore, it can be concluded that the sugarcane industry is not environmentally sustainable. The results of this research show that the use of electricity from bagasse cogeneration becomes the main contributor to all of damage categories. Meanwhile, the highest contribution to damage categories is human health with a total score of 59%. The results of this research are expected to reduce the environmental impact produced by PT. X so that PT. X will be more environmentally sustainable.


Author(s):  
Daniel Felipe Rodriguez-Vallejo ◽  
Antonio Valente ◽  
Gonzalo Guillén-Gosálbez ◽  
Benoit Chachuat

Reducing the contribution of the transport sector to climate change calls for a transition towards renewable fuels. Polyoxymethylene dimethyl ethers (OMEn) constitute a promising alternative to fossil-based diesel. This article...


Author(s):  
Cheila Almeida ◽  
Philippe Loubet ◽  
Tamíris Pacheco da Costa ◽  
Paula Quinteiro ◽  
Jara Laso ◽  
...  

2021 ◽  
Vol 13 (9) ◽  
pp. 5322
Author(s):  
Gabriel Zsembinszki ◽  
Noelia Llantoy ◽  
Valeria Palomba ◽  
Andrea Frazzica ◽  
Mattia Dallapiccola ◽  
...  

The buildings sector is one of the least sustainable activities in the world, accounting for around 40% of the total global energy demand. With the aim to reduce the environmental impact of this sector, the use of renewable energy sources coupled with energy storage systems in buildings has been investigated in recent years. Innovative solutions for cooling, heating, and domestic hot water in buildings can contribute to the buildings’ decarbonization by achieving a reduction of building electrical consumption needed to keep comfortable conditions. However, the environmental impact of a new system is not only related to its electrical consumption from the grid, but also to the environmental load produced in the manufacturing and disposal stages of system components. This study investigates the environmental impact of an innovative system proposed for residential buildings in Mediterranean climate through a life cycle assessment. The results show that, due to the complexity of the system, the manufacturing and disposal stages have a high environmental impact, which is not compensated by the reduction of the impact during the operational stage. A parametric study was also performed to investigate the effect of the design of the storage system on the overall system impact.


Sign in / Sign up

Export Citation Format

Share Document