Return to the Paleocene

Author(s):  
Benjamin Hale

This chapter introduces the reader to philosophical and ethical inquiry by forging a distinction between descriptive and normative claims, as well as explanatory and justificatory arguments. It utilizes cases of paleontological discovery and climate communication to argue that “catastrophe reasoning” about climate change is not only politically but also ethically problematic. In this respect, it relies on the current climate discussion to frame the general argument criticized in this book: that the mere demonstration of nature’s value is enough to generate obligations to protect nature.

2021 ◽  
Author(s):  
Marine Prieur ◽  
Alexander C. Whittaker ◽  
Fritz Schlunegger ◽  
Tor O. Sømme ◽  
Jean Braun ◽  
...  

<p>Sedimentary dynamics and fluxes are influenced by both autogenic and allogenic forcings. A better understanding of the evolution of sedimentary systems through time and space requires us to decipher, and therefore to characterise, the impact of each of these on the Earth’s landscape. Given the current increase in the concentration of atmospheric carbon, studying the impact of rapid and global climate changes is of particular importance at the present time. Such events have been clearly defined in the geologic record. Among them, the Paleocene-Eocene Thermal Maximum (PETM) has been extensively studied worldwide and represents a possible analogue of the rapid current climate warming.</p><p>The present project focuses on the Southern Pyrenees (Spain) where excellent exposures of the Paleocene-Eocene interval span a large range of depositional environments from continental to deep-marine. These conditions allow us to collect data along the whole depositional system in order to document changes in sediment fluxes and paleohydraulic conditions. Because hydrological conditions have an impact on sediment transport through hydrodynamics, paleoflow reconstructions can shed light on changes in sediment dynamics. This information is reconstructed from the statistical distributions of channel morphologies, characteristic system dimensions including bankfull channel depth and width, and grain-sizes.</p><p>With this approach, our aim is to provide both qualitative and quantitative assessments of the magnitude and extent of the perturbation of sedimentary fluxes along an entire source-to-sink system during an episode of extreme climate change. This will lead to a better understanding of the impact of abrupt climate change on earth surface systems in mid-latitudinal areas, with possible implications for current climate adaptation policy.</p><p>This research is carried out in the scope of the lead author’s PhD project and is part of the S2S-FUTURE European Marie Skłodowska-Curie ITN (Grant Agreement No 860383).</p>


2021 ◽  
Vol 15 (2) ◽  
pp. e0009081
Author(s):  
Happiness Jackson Nnko ◽  
Paul Simon Gwakisa ◽  
Anibariki Ngonyoka ◽  
Calvin Sindato ◽  
Anna Bond Estes

In the Maasai Steppe, public health and economy are threatened by African Trypanosomiasis, a debilitating and fatal disease to livestock (African Animal Trypanosomiasis -AAT) and humans (Human African Trypanosomiasis—HAT), if not treated. The tsetse fly is the primary vector for both HAT and AAT and climate is an important predictor of their occurrence and the parasites they carry. While understanding tsetse fly distribution is essential for informing vector and disease control strategies, existing distribution maps are old and were based on coarse spatial resolution data, consequently, inaccurately representing vector and disease dynamics necessary to design and implement fit-for-purpose mitigation strategies. Also, the assertion that climate change is altering tsetse fly distribution in Tanzania lacks empirical evidence. Despite tsetse flies posing public health risks and economic hardship, no study has modelled their distributions at a scale needed for local planning. This study used MaxEnt species distribution modelling (SDM) and ecological niche modeling tools to predict potential distribution of three tsetse fly species in Tanzania’s Maasai Steppe from current climate information, and project their distributions to midcentury climatic conditions under representative concentration pathways (RCP) 4.5 scenarios. Current climate results predicted that G. m. morsitans, G. pallidipes and G swynnertoni cover 19,225 km2, 7,113 km2 and 32,335 km2 and future prediction indicated that by the year 2050, the habitable area may decrease by up to 23.13%, 12.9% and 22.8% of current habitable area, respectively. This information can serve as a useful predictor of potential HAT and AAT hotspots and inform surveillance strategies. Distribution maps generated by this study can be useful in guiding tsetse fly control managers, and health, livestock and wildlife officers when setting surveys and surveillance programs. The maps can also inform protected area managers of potential encroachment into the protected areas (PAs) due to shrinkage of tsetse fly habitats outside PAs.


2021 ◽  
Author(s):  
Wim Thiery ◽  
Stefan Lange ◽  
Joeri Rogelj ◽  
Carl-Friedrich Schleussner ◽  
Lukas Gudmundsson ◽  
...  

<p>People are being affected by climate change around the globe today at around 1°C of warming above pre-industrial levels. Current policies towards climate mitigation would result in about twice as much warming over the next 80 years, roughly the lifetime of a today's newborn. Here we quantify the stronger climate change burden that will fall on younger generations by introducing a novel analysis framework that expresses impacts as a function of how they are experienced along the course of a person's life. Combining projections of population, temperature, and 15 impact models encompassing droughts, heatwaves, tropical cyclones, crop failure, floods, and wildfires, we show that, under current climate pledges, newborns in 2020 are projected to experience 2-13 times more extreme events during their life than a person born in 1960, with substantial variations across regions. Limiting warming to 1.5°C consistently reduces that burden, while still leaving younger generations with unavoidable impacts that are unmatched by the impacts experienced by older generations. Our results provide a quantified scientific basis to understand the position from which younger generations challenge the present shortfall of adequate climate action.</p>


2021 ◽  
Author(s):  
Lan-Huong Pham ◽  
Tu-Phuoc-Nguyen Vo ◽  
Thanh-Trung Tran ◽  
T. M.-Hien Tran

2016 ◽  
Vol 46 (2) ◽  
pp. 274-283 ◽  
Author(s):  
A. Zubizarreta-Gerendiain ◽  
J. Garcia-Gonzalo ◽  
H. Strandman ◽  
K. Jylhä ◽  
H. Peltola

We studied regional effects of alternative climate change and management scenarios on timber production, its economic profitability (net present value (NPV), with 2% interest rate), and carbon stocks over a 90 year simulation period in Norway spruce (Picea abies (L.) Karst.) forests located in southern, central, and northern Finland. We also compared the results of optimised management plans (maximizing incomes) and fixed management scenarios. Business as usual (BAU) management recommendations were used as the basis for alternative management scenarios. The forest ecosystem model SIMA together with a forest optimisation tool was employed. To consider the uncertainties related to climate change, we applied two climate change scenarios (SRES B1 and SRES A2) in addition to the current climate. Results showed that timber production, NPV, and carbon stocks of forests would reduce in southern Finland, opposite to northern Finland, especially under the strong climate change scenario (SRES A2) compared with the current climate. In central Finland, climate change would have little effect. The use of optimised management plans also resulted in higher timber yield, NPV, and carbon stock of forests compared with the use of a single management scenario, regardless of forest region and climate scenario applied. In the future, we may need to modify the current BAU management recommendations to properly adapt to the changing climatic conditions.


2020 ◽  
Author(s):  
Andrey Martynov ◽  
Timothy Raupach ◽  
Olivia Martius

<p>Several remarkable hailstorms have occurred on the territory of Switzerland during the month<br>of May, 2018.<br>This period has been simulated, using the WRF4.0 model at a convection-permitting<br>resolution (1.5 km), using different microphysical schemes (Thompson, Morrison, P3).<br>The surrogate climate change approach has been used for imitating the climate conditions,<br>corresponding to the end of the 21st century (CMIP5 model data, RCP8.5 scenario).<br>The HAILCAST-1D model output has been used as a measure of simulated hail size and 5-<br>minute 3-D radar reflectivity field has been used for cell identification and tracking.<br>Hailstorms produced in the current climate and in surrogate climate change simulations have<br>been examined using neighborhood methods and a storm-tracking algorithm. Current-climate<br>simulated hailstorms were compared with the ground observations and MeteoSwiss radar<br>data.<br>The influence of microphysical schemes to the characteristics of simulated hailstorms has<br>been studied. </p>


2020 ◽  
Author(s):  
Hanna Bolbot ◽  
Vasyl Grebin

<p>The most urgent tasks facing hydrologists of Ukraine and the world include identifying patterns of rivers hydrological regime against the background of global warming, and assessing these changes. Changes in the annual runoff distribution under climate change impact require separate investigation of anthropogenically altered catchments, such as the Siverskyi Donets River Basin. Siverskyi Donets is the largest river in Eastern Ukraine and the main source of water supply for Kharkiv, Luhansk and Donetsk regions.</p><p>The annual runoff distribution of the Siverskyi Donets River Basin was evaluated by two periods: to the beginning of pronounced climatic changes and the current period. The research is proposed for three water year types: wet year, average year and dry year. The Siverskyi Donets Basin is a complicated water body with peculiar physico-geographical conditions, because of that annual runoff distribution is somewhat different for the left-bank tributaries, right-bank tributaries and, in fact, the Siverskyi Donets River itself.</p><p>It is found that the most runoff of the wet year for both periods is in the spring months. The current period is characterized by a much smaller runoff of spring flood (from the volume of annual runoff) than in the previous period. The annual runoff distribution is offset. Some differences can be observed between the left and right tributaries. For the left-bank tributaries, which has less anthropogenic load, climate change has led to a significant increase of winter and summer-autumn low flow periods. On the right tributaries of the Siverskyi Donets, which are flowing within the industrial part of the Donbass, the low flow period has not changed, or even decreased. Such situation is due to the decrease of mine water disposal because of the industrial production decrease in the region.</p><p>The largest part of the annual runoff in the average year falls on February and March. In the current period, the spring flood has decreased, but the summer and autumn low flow period has increased. The left-bank tributaries runoff during the winter low period is decrease. Instead, the runoff attributable to the autumn and winter low period has increased for the right-bank tributaries and the Siverskyi Donets itself.</p><p>Analyzing the runoff distribution of dry year, we can conclude that the most wet is February. At present, in dry years, spring flood practically are not allocated from the hydrograph; the baseflow months runoff significantly increased. The volume of winter runoff of the Siverskyi Donets River Basin is increased. Actually, for the Siverskyi Donets River the runoff of the summer period has increased and the runoff of the winter and autumn periods has decreased at the present stage.</p><p>The annual runoff distribution of the Siverskyi Donets River Basin in the current climate change has undergone significant changes: the spring flood has decreased and the summer-autumn low flow has increased.</p>


Sign in / Sign up

Export Citation Format

Share Document