Impact of extreme hydrological perturbation on sediment distribution from source to sink, PETM, Spain.

Author(s):  
Marine Prieur ◽  
Alexander C. Whittaker ◽  
Fritz Schlunegger ◽  
Tor O. Sømme ◽  
Jean Braun ◽  
...  

<p>Sedimentary dynamics and fluxes are influenced by both autogenic and allogenic forcings. A better understanding of the evolution of sedimentary systems through time and space requires us to decipher, and therefore to characterise, the impact of each of these on the Earth’s landscape. Given the current increase in the concentration of atmospheric carbon, studying the impact of rapid and global climate changes is of particular importance at the present time. Such events have been clearly defined in the geologic record. Among them, the Paleocene-Eocene Thermal Maximum (PETM) has been extensively studied worldwide and represents a possible analogue of the rapid current climate warming.</p><p>The present project focuses on the Southern Pyrenees (Spain) where excellent exposures of the Paleocene-Eocene interval span a large range of depositional environments from continental to deep-marine. These conditions allow us to collect data along the whole depositional system in order to document changes in sediment fluxes and paleohydraulic conditions. Because hydrological conditions have an impact on sediment transport through hydrodynamics, paleoflow reconstructions can shed light on changes in sediment dynamics. This information is reconstructed from the statistical distributions of channel morphologies, characteristic system dimensions including bankfull channel depth and width, and grain-sizes.</p><p>With this approach, our aim is to provide both qualitative and quantitative assessments of the magnitude and extent of the perturbation of sedimentary fluxes along an entire source-to-sink system during an episode of extreme climate change. This will lead to a better understanding of the impact of abrupt climate change on earth surface systems in mid-latitudinal areas, with possible implications for current climate adaptation policy.</p><p>This research is carried out in the scope of the lead author’s PhD project and is part of the S2S-FUTURE European Marie Skłodowska-Curie ITN (Grant Agreement No 860383).</p>

2015 ◽  
Vol 22 (1) ◽  
pp. 117-121
Author(s):  
P. Rama Chandra Prasad

Abstract This research note focuses on the current climate change research scenario and discusses primarily what is required in the present global climate change conditions. Most of the climate change research and models predict adverse future conditions that have to be faced by humanity, with less emphasis on mitigation measures. Moreover, research ends as reports on the shelves of scientists and researchers and as publications in journals. At this juncture the major focus should be on research that helps in reducing the impact rather than on analysing future scenarios of climate change using different models. The article raises several questions and suggestions regards climate change research and lays emphasis on what we really need from climate change researchers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yong Zhang ◽  
Lu-yu Liu ◽  
Yi Liu ◽  
Man Zhang ◽  
Cheng-bang An

AbstractWithin the mountain altitudinal vegetation belts, the shift of forest tree lines and subalpine steppe belts to high altitudes constitutes an obvious response to global climate change. However, whether or not similar changes occur in steppe belts (low altitude) and nival belts in different areas within mountain systems remain undetermined. It is also unknown if these, responses to climate change are consistent. Here, using Landsat remote sensing images from 1989 to 2015, we obtained the spatial distribution of altitudinal vegetation belts in different periods of the Tianshan Mountains in Northwestern China. We suggest that the responses from different altitudinal vegetation belts to global climate change are different. The changes in the vegetation belts at low altitudes are spatially different. In high-altitude regions (higher than the forest belts), however, the trend of different altitudinal belts is consistent. Specifically, we focused on analyses of the impact of changes in temperature and precipitation on the nival belts, desert steppe belts, and montane steppe belts. The results demonstrated that the temperature in the study area exhibited an increasing trend, and is the main factor of altitudinal vegetation belts change in the Tianshan Mountains. In the context of a significant increase in temperature, the upper limit of the montane steppe in the eastern and central parts will shift to lower altitudes, which may limit the development of local animal husbandry. The montane steppe in the west, however, exhibits the opposite trend, which may augment the carrying capacity of pastures and promote the development of local animal husbandry. The lower limit of the nival belt will further increase in all studied areas, which may lead to an increase in surface runoff in the central and western regions.


2021 ◽  
Vol 13 (12) ◽  
pp. 6517
Author(s):  
Innocent Chirisa ◽  
Trynos Gumbo ◽  
Veronica N. Gundu-Jakarasi ◽  
Washington Zhakata ◽  
Thomas Karakadzai ◽  
...  

Reducing vulnerability to climate change and enhancing the long-term coping capacities of rural or urban settlements to negative climate change impacts have become urgent issues in developing countries. Developing countries do not have the means to cope with climate hazards and their economies are highly dependent on climate-sensitive sectors such as agriculture, water, and coastal zones. Like most countries in Southern Africa, Zimbabwe suffers from climate-induced disasters. Therefore, this study maps critical aspects required for setting up a strong financial foundation for sustainable climate adaptation in Zimbabwe. It discusses the frameworks required for sustainable climate adaptation finance and suggests the direction for success in leveraging global climate financing towards building a low-carbon and climate-resilient Zimbabwe. The study involved a document review and analysis and stakeholder consultation methodological approach. The findings revealed that Zimbabwe has been significantly dependent on global finance mechanisms to mitigate the effects of climate change as its domestic finance mechanisms have not been fully explored. Results revealed the importance of partnership models between the state, individuals, civil society organisations, and agencies. Local financing institutions such as the Infrastructure Development Bank of Zimbabwe (IDBZ) have been set up. This operates a Climate Finance Facility (GFF), providing a domestic financial resource base. A climate change bill is also under formulation through government efforts. However, numerous barriers limit the adoption of adaptation practices, services, and technologies at the scale required. The absence of finance increases the vulnerability of local settlements (rural or urban) to extreme weather events leading to loss of life and property and compromised adaptive capacity. Therefore, the study recommends an adaptation financing framework aligned to different sectoral policies that can leverage diverse opportunities such as blended climate financing. The framework must foster synergies for improved impact and implementation of climate change adaptation initiatives for the country.


2013 ◽  
Vol 2013 ◽  
pp. 1-18 ◽  
Author(s):  
Yanyun Liu ◽  
Lian Xie ◽  
John M. Morrison ◽  
Daniel Kamykowski

The regional impact of global climate change on the ocean circulation around the Galápagos Archipelago is studied using the Hybrid Coordinate Ocean Model (HYCOM) configured for a four-level nested domain system. The modeling system is validated and calibrated using daily atmospheric forcing derived from the NCEP/NCAR reanalysis dataset from 1951 to 2007. The potential impact of future anthropogenic global warming (AGW) in the Galápagos region is examined using the calibrated HYCOM with forcing derived from the IPCC-AR4 climate model. Results show that although the oceanic variability in the entire Galápagos region is significantly affected by global climate change, the degree of such effects is inhomogeneous across the region. The upwelling region to the west of the Isabella Island shows relatively slower warming trends compared to the eastern Galápagos region. Diagnostic analysis suggests that the variability in the western Galápagos upwelling region is affected mainly by equatorial undercurrent (EUC) and Panama currents, while the central/east Galápagos is predominantly affected by both Peru and EUC currents. The inhomogeneous responses in different regions of the Galápagos Archipelago to future AGW can be explained by the incoherent changes of the various current systems in the Galápagos region as a result of global climate change.


Author(s):  
Viktoriia Sydorenko ◽  

This article is devoted to an overview of such a category of migrants as climate refugees. The author pays attention to the general characteristics of the impact of global climate change on migrants. Particular attention is paid to the disclosure of the term “climate refugee”, the reasons for the emergence of this category of people, as well as the problems of counting climate refugees. The author also provides examples for solving these problems.


Author(s):  
Maria Polozhikhina ◽  

Climate conditions remain one of the main risk factors for domestic agriculture, and the consequences of global climate change are ambiguous in terms of prospects for agricultural production in Russia. This paper analyzes the impact of climate change on the country’s food security from the point of view of its self-sufficiency in grain primarily. Specific conditions prevailing on the Crimean peninsula are also considered.


2014 ◽  
Vol 937 ◽  
pp. 663-668
Author(s):  
Qiu Jing Li ◽  
Xiao Li Hou ◽  
Li Xue ◽  
Hong Yue Chen ◽  
Yun Ting Hao

Climate change refers to man-made changes in our climate, which is caused by changes in temperature, precipitation, and CO2. There is a lot of data coming from all over the world indicating that phenology of garden plants and biodiversity are being impacted by climate change. In the context of climate change, landscape plants can enhance carbon sink function, improve plant design, and mitigate climate change and so on. To determine the impact of these changes on garden plants, scientists would need to strengthen the study of garden plants under global climate change, including different garden type responses to climate change, invaliding species phenology study, extreme weather impacts on landscape plant phenology, the dominant factor of affecting garden plants in different regions, interactions of multiple environmental factors on influence mechanism of garden plants.


2014 ◽  
Vol 11 (5) ◽  
pp. 4579-4638 ◽  
Author(s):  
M. C. Peel ◽  
R. Srikanthan ◽  
T. A. McMahon ◽  
D. J. Karoly

Abstract. Two key sources of uncertainty in projections of future runoff for climate change impact assessments are uncertainty between Global Climate Models (GCMs) and within a GCM. Within-GCM uncertainty is the variability in GCM output that occurs when running a scenario multiple times but each run has slightly different, but equally plausible, initial conditions. The limited number of runs available for each GCM and scenario combination within the Coupled Model Intercomparison Project phase 3 (CMIP3) and phase 5 (CMIP5) datasets, limits the assessment of within-GCM uncertainty. In this second of two companion papers, the primary aim is to approximate within-GCM uncertainty of monthly precipitation and temperature projections and assess its impact on modelled runoff for climate change impact assessments. A secondary aim is to assess the impact of between-GCM uncertainty on modelled runoff. Here we approximate within-GCM uncertainty by developing non-stationary stochastic replicates of GCM monthly precipitation and temperature data. These replicates are input to an off-line hydrologic model to assess the impact of within-GCM uncertainty on projected annual runoff and reservoir yield. To-date within-GCM uncertainty has received little attention in the hydrologic climate change impact literature and this analysis provides an approximation of the uncertainty in projected runoff, and reservoir yield, due to within- and between-GCM uncertainty of precipitation and temperature projections. In the companion paper, McMahon et al. (2014) sought to reduce between-GCM uncertainty by removing poorly performing GCMs, resulting in a selection of five better performing GCMs from CMIP3 for use in this paper. Here we present within- and between-GCM uncertainty results in mean annual precipitation (MAP), temperature (MAT) and runoff (MAR), the standard deviation of annual precipitation (SDP) and runoff (SDR) and reservoir yield for five CMIP3 GCMs at 17 world-wide catchments. Based on 100 stochastic replicates of each GCM run at each catchment, within-GCM uncertainty was assessed in relative form as the standard deviation expressed as a percentage of the mean of the 100 replicate values of each variable. The average relative within-GCM uncertainty from the 17 catchments and 5 GCMs for 2015–2044 (A1B) were: MAP 4.2%, SDP 14.2%, MAT 0.7%, MAR 10.1% and SDR 17.6%. The Gould–Dincer Gamma procedure was applied to each annual runoff time-series for hypothetical reservoir capacities of 1× MAR and 3× MAR and the average uncertainty in reservoir yield due to within-GCM uncertainty from the 17 catchments and 5 GCMs were: 25.1% (1× MAR) and 11.9% (3× MAR). Our approximation of within-GCM uncertainty is expected to be an underestimate due to not replicating the GCM trend. However, our results indicate that within-GCM uncertainty is important when interpreting climate change impact assessments. Approximately 95% of values of MAP, SDP, MAT, MAR, SDR and reservoir yield from 1× MAR or 3× MAR capacity reservoirs are expected to fall within twice their respective relative uncertainty (standard deviation/mean). Within-GCM uncertainty has significant implications for interpreting climate change impact assessments that report future changes within our range of uncertainty for a given variable – these projected changes may be due solely to within-GCM uncertainty. Since within-GCM variability is amplified from precipitation to runoff and then to reservoir yield, climate change impact assessments that do not take into account within-GCM uncertainty risk providing water resources management decision makers with a sense of certainty that is unjustified.


Daedalus ◽  
2021 ◽  
Vol 150 (4) ◽  
pp. 7-26
Author(s):  
Allen Isaacman ◽  
Muchaparara Musemwa

Abstract This essay explores the multiple ways in which the nexuses between water scarcity and climate change are socially and historically grounded in ordinary people's lived experiences and are embedded in specific fields of power. Here we specifically delineate four critical dimensions in which the water crises confronting the African continent in an age of climate change are clearly expressed: the increasing scarcity, privatization, and commodification of water in urban centers; the impact of large dams on the countryside; the health consequences of water shortages and how they, in turn, affect other aspects of people's experiences, sociopolitical dynamics, and well-being, broadly conceived; and water governance and the politics of water at the local, national, and transnational levels. These overarching themes form the collective basis for the host of essays in this volume that provide rich accounts of conflicts and struggles over water use and how these tensions have been mitigated.


2016 ◽  
Vol 155 (3) ◽  
pp. 407-420 ◽  
Author(s):  
R. S. SILVA ◽  
L. KUMAR ◽  
F. SHABANI ◽  
M. C. PICANÇO

SUMMARYTomato (Solanum lycopersicum L.) is one of the most important vegetable crops globally and an important agricultural sector for generating employment. Open field cultivation of tomatoes exposes the crop to climatic conditions, whereas greenhouse production is protected. Hence, global warming will have a greater impact on open field cultivation of tomatoes rather than the controlled greenhouse environment. Although the scale of potential impacts is uncertain, there are techniques that can be implemented to predict these impacts. Global climate models (GCMs) are useful tools for the analysis of possible impacts on a species. The current study aims to determine the impacts of climate change and the major factors of abiotic stress that limit the open field cultivation of tomatoes in both the present and future, based on predicted global climate change using CLIMatic indEX and the A2 emissions scenario, together with the GCM Commonwealth Scientific and Industrial Research Organisation (CSIRO)-Mk3·0 (CS), for the years 2050 and 2100. The results indicate that large areas that currently have an optimum climate will become climatically marginal or unsuitable for open field cultivation of tomatoes due to progressively increasing heat and dry stress in the future. Conversely, large areas now marginal and unsuitable for open field cultivation of tomatoes will become suitable or optimal due to a decrease in cold stress. The current model may be useful for plant geneticists and horticulturalists who could develop new regional stress-resilient tomato cultivars based on needs related to these modelling projections.


Sign in / Sign up

Export Citation Format

Share Document