Simulated hailstorms over Switzerland in May 2018 in current and future climate conditions

Author(s):  
Andrey Martynov ◽  
Timothy Raupach ◽  
Olivia Martius

<p>Several remarkable hailstorms have occurred on the territory of Switzerland during the month<br>of May, 2018.<br>This period has been simulated, using the WRF4.0 model at a convection-permitting<br>resolution (1.5 km), using different microphysical schemes (Thompson, Morrison, P3).<br>The surrogate climate change approach has been used for imitating the climate conditions,<br>corresponding to the end of the 21st century (CMIP5 model data, RCP8.5 scenario).<br>The HAILCAST-1D model output has been used as a measure of simulated hail size and 5-<br>minute 3-D radar reflectivity field has been used for cell identification and tracking.<br>Hailstorms produced in the current climate and in surrogate climate change simulations have<br>been examined using neighborhood methods and a storm-tracking algorithm. Current-climate<br>simulated hailstorms were compared with the ground observations and MeteoSwiss radar<br>data.<br>The influence of microphysical schemes to the characteristics of simulated hailstorms has<br>been studied. </p>

2018 ◽  
Vol 18 (9) ◽  
pp. 6121-6139 ◽  
Author(s):  
Fernando Iglesias-Suarez ◽  
Douglas E. Kinnison ◽  
Alexandru Rap ◽  
Amanda C. Maycock ◽  
Oliver Wild ◽  
...  

Abstract. Over the 21st century changes in both tropospheric and stratospheric ozone are likely to have important consequences for the Earth's radiative balance. In this study, we investigate the radiative forcing from future ozone changes using the Community Earth System Model (CESM1), with the Whole Atmosphere Community Climate Model (WACCM), and including fully coupled radiation and chemistry schemes. Using year 2100 conditions from the Representative Concentration Pathway 8.5 (RCP8.5) scenario, we quantify the individual contributions to ozone radiative forcing of (1) climate change, (2) reduced concentrations of ozone depleting substances (ODSs), and (3) methane increases. We calculate future ozone radiative forcings and their standard error (SE; associated with inter-annual variability of ozone) relative to year 2000 of (1) 33 ± 104 m Wm−2, (2) 163 ± 109 m Wm−2, and (3) 238 ± 113 m Wm−2 due to climate change, ODSs, and methane, respectively. Our best estimate of net ozone forcing in this set of simulations is 430 ± 130 m Wm−2 relative to year 2000 and 760 ± 230 m Wm−2 relative to year 1750, with the 95 % confidence interval given by ±30 %. We find that the overall long-term tropospheric ozone forcing from methane chemistry–climate feedbacks related to OH and methane lifetime is relatively small (46 m Wm−2). Ozone radiative forcing associated with climate change and stratospheric ozone recovery are robust with regard to background climate conditions, even though the ozone response is sensitive to both changes in atmospheric composition and climate. Changes in stratospheric-produced ozone account for ∼ 50 % of the overall radiative forcing for the 2000–2100 period in this set of simulations, highlighting the key role of the stratosphere in determining future ozone radiative forcing.


2015 ◽  
Vol 6 (2) ◽  
pp. 1261-1275 ◽  
Author(s):  
J. Vilček ◽  
J. Škvarenina ◽  
J. Vido ◽  
R. Kandrík ◽  
J. Škvareninová ◽  
...  

Abstract. The influence of continents and oceans plays conceptually the key role in the climate conditions of Europeans regions. Continentality is also an important phytogeographic factor of vegetation distribution in Slovakia. This study analysed continentality development at six meteorological stations in Slovakia during the periods 1951–2013, or 1961–2013. Rising trend of the maximal and minimal temperature has been observed at all meteorological stations (lowland as well as mountainous stations) in this periods. However the results showed non-significant increase of continentality index during the monitored period of 63 (53) years. Based on the results of CCM 2000 climate model we cannot expect significant changes of continentality by the end of the 21st century, but the climate change will be significantly manifested by the increase of maximum and minimum air temperatures.


2020 ◽  
Vol 10 (3) ◽  
pp. 16
Author(s):  
Ado ALI ◽  
Laouali ABDOU ◽  
Maman Maârouhi INOUSSA ◽  
Josiane SEGHIERI ◽  
Ali MAHAMANE

The human use of plant resources and land to face increasing population needs in Africa to the regression or even the disappearance of some useful multi-purpose species such as Diospyros mespiliformis Hochst. Ex A. Rich. Increasing climatic variability is an additional threat for these species. The present study aims to identify the areas that are potentially favorable to D. mespiliformis conservation or regeneration in Niger and to analyze the impact of the current climate change. Thus to assess the D. mespiliformis distribution areas, the geographic coordinates of D. mespiliformis, the bioclimatic data, the soil and vegetation cover were collected and used to modeling based on the principle of maximum entropy (MaxEnt). The soil cover, annual cumulated precipitations and the average temperature are the most determining variables. This study also shows that the ecological niche of D. mespiliformis is located in the Central and Eastern bioclimates, within which almost 3% of the surface is very favorable under the current climate conditions and may reach 3. 94 % under 2050 ones after. These results indicate that the climate change expected in Niger is expected to be more favorable to the studied species than the current climate conditions. This represents an opportunity for its domestication.


2020 ◽  
pp. 50-57
Author(s):  
Joanna Klimowicz

XXI wiek przyczynił się do rozwoju nowych, innowacyjnych technologii w wielu dziedzinach życia, m.in. w medycynie, lotnictwie, inżynierii molekularnej czy budownictwie. Współczesne technologie rozwijają się bardzo szybko, przynosząc rozmaite udogodnienia współczesnym człowiekowi. Jednakże XXI wiek przyniósł nam też niszczycielskie działanie narastających anomalii pogodowych związanych z pogłębiającymi się zmianami klimatu. Żyjąc w dobie konsumpcjonizmu, powinniśmy się zastanowić w jaki sposób przyczyniamy się do tego stanu? Czy my współcześnie żyjący możemy wpłynąć na poprawę naszej egzystencji? Czy współcześnie proponowane rozwiązania są w stanie ochronić nas przed wieloma negatywnymi skutkami zmian klimatu? Czy możemy wpłynąć na wzrost zanieczyszczenia powietrza, wzrost temperatury oraz związane z nimi narastające zjawiska takie jak powodzie czy pożary? Mieszkańcy współczesnych miast stykają się z wieloma tymi niedogodnościami. My jako architekci i urbaniści powinniśmy reagować i wprowadzać takie rozwiązania, które będą sprzyjały poprawie warunków życia. Tematem artykuły jest przedstawienie wybranych przykładów rozwiązań zastosowania zieleni, wpływającej na niwelowanie niekorzystnych warunków klimatycznych panujących w miasta. Odpowiednio projektowana zieleń, zarówno w skali urbanistycznej jak i architektonicznej miasta, przyczynia się do niwelowanie Miejskiej Wyspy Ciepła, wpływa na poprawę komfortu zamieszkania, jest stabilizatorem temperatury oraz wilgotności. Badania kamerą termowizyjną wykazują w jaki sposób zastosowanie zieleni przyczynia się do obniżania temperatury w zabudowie śródmiejskiej. Wyniki badań stanowić uzupełnienie prowadzonych analiz związanych z obserwacją zachowań termicznych zabudowy miejskiej. Możliwość odniesienia wyników wpłynie na świadomość mieszkańców jest istotne jest stosowanie odpowiednich materiałów budowalnych oraz zieleni miejskiej jako jednych z elementów poprawiających komfort życia w mieście. The problem of the overheating of twenty-first century cities (UHI) versus greenery The 21st century has contributed to the development of new, innovative technologies in many areas of life, including medicine, aviation, molecular engineering and construction. Modern technologies are developing very quickly, bringing various conveniences to modern man. However, the 21st century has brought us also the destructive effect of growing weather anomalies associated with deepening climate change. Living in the age of consumerism, we should think about how we are contributing to this state? Can we, living today, improve our existence? Can the solutions proposed nowadays protect us from many negative effects of climate change? Can we influence the increase in air pollution, temperature rise and the associated growing phenomena such as floods and fires? Citizens of modern cities are facing many of these inconveniences. We, as architects and urban planners, should react and implement solutions that will improve living conditions. The subject of the articles is to present selected examples of solutions for the use of greenery, which will help to eliminate unfavorable climate conditions in cities. Properly designed greenery, both on the urban and architectural scale of the city, contributes to the leveling of the Urban Heat Island, improves the comfort of living, and is a stabilizer of temperature and humidity. Research with a thermal imaging camera shows how the use of greenery contributes to lowering the temperature in downtown buildings. The results of the research are a supplement to the analyses carried out in connection with the observation of thermal behavior of urban development. The possibility of referencing the results will influence the residents’ awareness. It is important to use appropriate building materials and greenery as one of the elements improving the comfort of living in the city.


2007 ◽  
Vol 7 (1) ◽  
pp. 165-175 ◽  
Author(s):  
J. G. Pinto ◽  
E. L. Fröhlich ◽  
G. C. Leckebusch ◽  
U. Ulbrich

Abstract. A simple storm loss model is applied to an ensemble of ECHAM5/MPI-OM1 GCM simulations in order to estimate changes of insured loss potentials over Europe in the 21st century. Losses are computed based on the daily maximum wind speed for each grid point. The calibration of the loss model is performed using wind data from the ERA40-Reanalysis and German loss data. The obtained annual losses for the present climate conditions (20C, three realisations) reproduce the statistical features of the historical insurance loss data for Germany. The climate change experiments correspond to the SRES-Scenarios A1B and A2, and for each of them three realisations are considered. On average, insured loss potentials increase for all analysed European regions at the end of the 21st century. Changes are largest for Germany and France, and lowest for Portugal/Spain. Additionally, the spread between the single realisations is large, ranging e.g. for Germany from −4% to +43% in terms of mean annual loss. Moreover, almost all simulations show an increasing interannual variability of storm damage. This assessment is even more pronounced if no adaptation of building structure to climate change is considered. The increased loss potentials are linked with enhanced values for the high percentiles of surface wind maxima over Western and Central Europe, which in turn are associated with an enhanced number and increased intensity of extreme cyclones over the British Isles and the North Sea.


2020 ◽  
Vol 23 ◽  
Author(s):  
PLÍNIO MARCOS BERNARDO DE SOUZA ◽  
MARCELO DE PAULA CORRÊA ◽  
ROGER RODRIGUES TORRES ◽  
LUIZ FELIPE SILVA

Abstract The adverse effects of climate change may affect work conducted outdoors. For this reason, this study seeks to evaluate these effects by comparing South American work capacity under climate conditions between 1979 and 2005, as well as expected future climate scenarios from 2071 to 2100. Thermal stress was estimated using the Environmental Stress Index (ESI), based on atmospheric variables for climate projections from the Intergovernmental Panel on Climate Change (IPCC). The results indicate that, even in favorable climate scenarios, outdoor manual labor capacity will be reduced by 25 to 50% by the end of the 21st century in basically all of South America, especially in the Amazonian regions, parts of the north and northeast of Brazil, and in vast regions from Paraguay to Suriname. There is an overall pessimistic outlook with respect to outdoor working conditions during common labor hours due to increases in the greenhouse effect.


2015 ◽  
Vol 2 (3) ◽  
Author(s):  
Magali García Rosero ◽  
Hugo Soplín ◽  
Julio Alegre ◽  
Alexander Rodríguez ◽  
Manuel Cantos ◽  
...  

Se determinó la distribución potencial de C. capitata bajo condiciones del clima actual y un escenario de cambio climático (A1B-2030) para el Ecuador, empleando el modelo CLIMEX versión 3. El modelo usó parámetros fisiológicos de C. capitata y datos meteorológicos globales para construir un Índice Ecoclimático (IE), el cual describió zonas muy favorables (IE>30), zonas menos favorables (IE<30) y zonas nulas (IE=0) para la distribución de C. capitata durante todo el año. Se estimó que el porcentaje de áreas muy favorables (IE>30) de C. capitata es 47.73% en condiciones actuales de clima y 33.3% en el escenario A1B-2030. Adicionalmente, se estimó que el porcentaje de áreas menos favorables (IE<30) es 47.61% en condiciones actuales de clima y 62.17% en el escenario A1B-2030. Las áreas de probabilidad nula para establecimiento de C. capitata es 4.65% para condiciones actuales de clima y 4.80% para el escenario A1B-2030.AbstractThis study determined the potential distribution of C. capitata under current climate conditions and a climate change scenario (A1B-2030) for the Ecuador using the CLIMEX model version 3. The model used physiological parameters of C. capitata and global meteorological data, to build an Ecoclimatic Index (EI), which described the very favorable areas (EI > 30), less favorable areas (EI < 30) and less favorable areas (EI = 0) for the distribution of C. capitata throughout the year. It was estimated that the percentage of very favorable areas (EI > 30) of C. capitata is 47.73% in current climate conditions and 33.3% in the scenario (A1B-2030). In addition, it was estimated that the percentage of less favorable areas (EI < 30) is 47.61% in current climate conditions and 62.17% in the scenario (A1B-2030). The areas with zero probability for establishment of C. capitata is 4.65% for current climate conditions and 4.80% for the scenario (A1B-2030). 


2020 ◽  
Vol 17 ◽  
pp. 191-208
Author(s):  
María P. Amblar-Francés ◽  
Petra Ramos-Calzado ◽  
Jorge Sanchis-Lladó ◽  
Alfonso Hernanz-Lázaro ◽  
María C. Peral-García ◽  
...  

Abstract. The Pyrenees, located in the transition zone of Atlantic and Mediterranean climates, constitute a paradigmatic example of mountains undergoing rapid changes in environmental conditions, with potential impact on the availability of water resources, mainly for downstream populations. High-resolution probabilistic climate change projections for precipitation and temperature are a crucial element for stakeholders to make well-informed decisions on adaptation to new climate conditions. In this line, we have generated high–resolution climate projections for 21st century by applying two statistical downscaling methods (regression for max and min temperatures, and analogue for precipitation) over the Pyrenees region in the frame of the CLIMPY project over a new high-resolution (5 km × 5 km) observational grid using 24 climate models from CMIP5. The application of statistical downscaling to such a high resolution observational grid instead of station data partially circumvent the problems associated to the non-uniform distribution of observational in situ data. This new high resolution projections database based on statistical algorithms complements the widely used EUROCORDEX data based on dynamical downscaling and allows to identify features that are dependent on the particular downscaling method. In our analysis, we not only focus on maximum and minimum temperatures and precipitation changes but also on changes in some relevant extreme indexes, being 1986–2005 the reference period. Although climate models predict a general increase in temperature extremes for the end of the 21st century, the exact spatial distribution of changes in temperature and much more in precipitation remains uncertain as they are strongly model dependent. Besides, for precipitation, the uncertainty associated to models can mask – depending on the zones- the signal of change. However, the large number of downscaled models and the high resolution of the used grid allow us to provide differential information at least at massif level. The impact of the RCP becomes significant for the second half of the 21st century, with changes – differentiated by massifs – of extreme temperatures and analysed associated extreme indexes for RCP8.5 at the end of the century.


Sign in / Sign up

Export Citation Format

Share Document