scholarly journals Decision letter: Thrombospondin-4 controls matrix assembly during development and repair of myotendinous junctions

2014 ◽  
eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Arul Subramanian ◽  
Thomas F Schilling

Tendons are extracellular matrix (ECM)-rich structures that mediate muscle attachments with the skeleton, but surprisingly little is known about molecular mechanisms of attachment. Individual myofibers and tenocytes in Drosophila interact through integrin (Itg) ligands such as Thrombospondin (Tsp), while vertebrate muscles attach to complex ECM fibrils embedded with tenocytes. We show for the first time that a vertebrate thrombospondin, Tsp4b, is essential for muscle attachment and ECM assembly at myotendinous junctions (MTJs). Tsp4b depletion in zebrafish causes muscle detachment upon contraction due to defects in laminin localization and reduced Itg signaling at MTJs. Mutation of its oligomerization domain renders Tsp4b unable to rescue these defects, demonstrating that pentamerization is required for ECM assembly. Furthermore, injected human TSP4 localizes to zebrafish MTJs and rescues muscle detachment and ECM assembly in Tsp4b-deficient embryos. Thus Tsp4 functions as an ECM scaffold at MTJs, with potential therapeutic uses in tendon strengthening and repair.


1987 ◽  
Vol 262 (7) ◽  
pp. 2957-2967 ◽  
Author(s):  
J.A. McDonald ◽  
B.J. Quade ◽  
T.J. Broekelmann ◽  
R. LaChance ◽  
K. Forsman ◽  
...  

Cell Reports ◽  
2021 ◽  
Vol 34 (12) ◽  
pp. 108883
Author(s):  
Jasmin I. Maier ◽  
Manuel Rogg ◽  
Martin Helmstädter ◽  
Alena Sammarco ◽  
Oliver Schilling ◽  
...  

1994 ◽  
Vol 269 (10) ◽  
pp. 7651-7657
Author(s):  
K.Y. Moon ◽  
K.S. Shin ◽  
W.K. Song ◽  
C.H. Chung ◽  
D.B. Ha ◽  
...  

1991 ◽  
Vol 266 (15) ◽  
pp. 9697-9702 ◽  
Author(s):  
A.H. Limper ◽  
B.J. Quade ◽  
R.M. LaChance ◽  
T.M. Birkenmeier ◽  
T.S. Rangwala ◽  
...  

BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
E Soltanmohammadi ◽  
Y Zhang ◽  
I Chatzistamou ◽  
H. Kiaris

Abstract Background Genes that belong to the same network are frequently co-expressed, but collectively, how the coordination of the whole transcriptome is perturbed during aging remains unclear. To explore this, we calculated the correlation of each gene in the transcriptome with every other, in the brain of young and older outbred deer mice (P. leucopus and P. maniculatus). Results In about 25 % of the genes, coordination was inversed during aging. Gene Ontology analysis in both species, for the genes that exhibited inverse transcriptomic coordination during aging pointed to alterations in the perception of smell, a known impairment occurring during aging. In P. leucopus, alterations in genes related to cholesterol metabolism were also identified. Among the genes that exhibited the most pronounced inversion in their coordination profiles during aging was THBS4, that encodes for thrombospondin-4, a protein that was recently identified as rejuvenation factor in mice. Relatively to its breadth, abolishment of coordination was more prominent in the long-living P. leucopus than in P. maniculatus but in the latter, the intensity of de-coordination was higher. Conclusions There sults suggest that aging is associated with more stringent retention of expression profiles for some genes and more abrupt changes in others, while more subtle but widespread changes in gene expression appear protective. Our findings shed light in the mode of the transcriptional changes occurring in the brain during aging and suggest that strategies aiming to broader but more modest changes in gene expression may be preferrable to correct aging-associated deregulation in gene expression.


Blood ◽  
1999 ◽  
Vol 93 (9) ◽  
pp. 2984-2990 ◽  
Author(s):  
Qinghong Zhang ◽  
Olivier Peyruchaud ◽  
Kelly J. French ◽  
Magnus K. Magnusson ◽  
Deane F. Mosher

Abstract Fibronectin matrix assembly is a cell-dependent process mediated by cell surface binding sites for the 70-kD N-terminal portion of fibronectin. We have shown that Rho-dependent cytoskeleton reorganization induced by lysophosphatidic acid (LPA) or the microtubule-disrupting agent nocodazole increases fibronectin binding (Zhang et al, Mol Biol Cell 8:1415, 1997). Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid implicated in mitogenesis and cytoskeletal remodelling. Both LPA and S1P are present in increased amounts in serum as compared with plasma as a result of platelet activation. Addition of S1P to human osteosarcoma MG63 cells or human foreskin fibroblasts increased cell-mediated binding and assembly of fibronectin. MG63 cells expressed the Edg-2 and Edg-4 G-protein–coupled receptors for bioactive lipids, whereas foreskin fibroblasts expressed Edg-2, Edg-3, and Edg-4. The stimulatory effect of S1P on the binding of fibronectin or the N-terminal 70-kD fragment of fibronectin was dynamic and due to increases in both the number and affinity of binding sites. The stimulation of 70-kD fragment binding by nanomolar S1P, like stimulation of binding by LPA or nocodazole, was blocked by inactivation of Rho with C3 exotoxin but not by pertussis toxin-mediated inactivation of Gi. These results indicate a common signal pathway leading to control of cellular fibronectin matrix assembly by bioactive lipids generated during blood coagulation.


1995 ◽  
Vol 270 (22) ◽  
pp. 13105-13111 ◽  
Author(s):  
Alfonso Colombatti ◽  
Maria Teresa Mucignat ◽  
Paolo Bonaldo

Sign in / Sign up

Export Citation Format

Share Document