scholarly journals Thrombospondin-4 controls matrix assembly during development and repair of myotendinous junctions

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Arul Subramanian ◽  
Thomas F Schilling

Tendons are extracellular matrix (ECM)-rich structures that mediate muscle attachments with the skeleton, but surprisingly little is known about molecular mechanisms of attachment. Individual myofibers and tenocytes in Drosophila interact through integrin (Itg) ligands such as Thrombospondin (Tsp), while vertebrate muscles attach to complex ECM fibrils embedded with tenocytes. We show for the first time that a vertebrate thrombospondin, Tsp4b, is essential for muscle attachment and ECM assembly at myotendinous junctions (MTJs). Tsp4b depletion in zebrafish causes muscle detachment upon contraction due to defects in laminin localization and reduced Itg signaling at MTJs. Mutation of its oligomerization domain renders Tsp4b unable to rescue these defects, demonstrating that pentamerization is required for ECM assembly. Furthermore, injected human TSP4 localizes to zebrafish MTJs and rescues muscle detachment and ECM assembly in Tsp4b-deficient embryos. Thus Tsp4 functions as an ECM scaffold at MTJs, with potential therapeutic uses in tendon strengthening and repair.

2000 ◽  
Vol 113 (21) ◽  
pp. 3715-3723 ◽  
Author(s):  
M.D. Martin-Bermudo ◽  
N.H. Brown

The assembly of an organism requires the interaction between different layers of cells, in many cases via an extracellular matrix. In the developing Drosophila larva, muscles attach in an integrin-dependent manner to the epidermis, via a specialized extracellular matrix called tendon matrix. Tiggrin, a tendon matrix integrin ligand, is primarily synthesized by cells distant to the muscle attachment sites, yet it accumulates specifically at these sites. Previous work has shown that the PS integrins are not required for tiggrin localization, suggesting that there is redundancy among tiggrin receptors. We have examined this by testing whether the PS2 integrin can recruit tiggrin to ectopic locations within the Drosophila embryo. We found that neither the wild type nor modified forms of the PS2 integrin, which have higher affinity for tiggrin, can recruit tiggrin to new cellular contexts. Next, we genetically manipulated the fate of the muscles and the epidermal muscle attachment cells, which demonstrated that muscles have the primary role in recruiting tiggrin to the tendon matrix and that cell-cell contact is necessary for this recruitment. Thus we propose that the inherent polarity of the muscle cells leads to a molecular specialization of their ends, and interactions between the ends produces an integrin-independent tiggrin receptor. Thus, interaction between cells generates an extracellular environment capable of nucleating extracellular matrix assembly.


2019 ◽  
Vol 23 (2) ◽  
pp. 117-119 ◽  
Author(s):  
D. N. Paskalev ◽  
B. T. Galunska ◽  
D. Petkova-Valkova

Tamm–Horsfall Protein (uromodulin) is named after Igor Tamm and Franc Horsfall Jr who described it for the first time in 1952. It is a glycoprotein, secreted by the cells in the thick ascending limb of the loop of Henle. This protein will perform a number of important pathophysiological functions, including protection against uroinfections, especially caused by E. Сoli, and protection against formation of calcium concernments in the kidney. Igor Tamm (1922-1995) is an outstanding cytologist, virologist and biochemist. He is one of the pioneers in the study of viral replication. He was born in Estonia and died in the USA. In 1964 he was elected for a professorship in Rockefeller Institute for Medical Research, where has been working continuously. Since 1959, he became a head of the virology lab established by his mentor and co-author Franc Horsfall. In the course of studies on the natural inhibitor of viral replication, Tamm and Horsfall isolated and characterized biochemically a new protein named after their names. Franc Lappin Horsfall Jr (1906-1971) was a well-known clinician and virologist with remarkable achievements in internal medicine. He was born and died in the USA. He worked in the Rockefeller Hospital from 1934 to 1960, then in the Center for Cancer Research at the Sloan-Kettering Institute. Here he was a leader of a research team studying the molecular mechanisms of immunity, the effects of chemotherapy with benzimidazole compounds (together with I. Tamm), coxsackie viruses, herpes simplex virus, etc. 


2021 ◽  
Vol 22 (11) ◽  
pp. 5619
Author(s):  
Iris Ribitsch ◽  
Andrea Bileck ◽  
Alexander D. Aldoshin ◽  
Maciej M. Kańduła ◽  
Rupert L. Mayer ◽  
...  

Tendinopathies are painful, disabling conditions that afflict 25% of the adult human population. Filling an unmet need for realistic large-animal models, we here present an ovine model of tendon injury for the comparative study of adult scarring repair and fetal regeneration. Complete regeneration of the fetal tendon within 28 days is demonstrated, while adult tendon defects remained macroscopically and histologically evident five months post-injury. In addition to a comprehensive histological assessment, proteome analyses of secretomes were performed. Confirming histological data, a specific and pronounced inflammation accompanied by activation of neutrophils in adult tendon defects was observed, corroborated by the significant up-regulation of pro-inflammatory factors, neutrophil attracting chemokines, the release of potentially tissue-damaging antimicrobial and extracellular matrix-degrading enzymes, and a response to oxidative stress. In contrast, secreted proteins of injured fetal tendons included proteins initiating the resolution of inflammation or promoting functional extracellular matrix production. These results demonstrate the power and relevance of our novel ovine fetal tendon regeneration model, which thus promises to accelerate research in the field. First insights from the model already support our molecular understanding of successful fetal tendon healing processes and may guide improved therapeutic strategies.


Agronomy ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 794
Author(s):  
Luca M. Scolari ◽  
Robert D. Hancock ◽  
Pete E. Hedley ◽  
Jenny Morris ◽  
Kay Smith ◽  
...  

‘Crumbly’ fruit is a developmental disorder in raspberry that results in malformed and unsaleable fruits. For the first time, we define two distinct crumbly phenotypes as part of this work. A consistent crumbly fruit phenotype affecting the majority of fruits every season, which we refer to as crumbly fruit disorder (CFD) and a second phenotype where symptoms vary across seasons as malformed fruit disorder (MFD). Here, segregation of crumbly fruit of the MFD phenotype was examined in a full-sib family and three QTL (Quantitative Trait Loci) were identified on a high density GbS (Genotype by Sequencing) linkage map. This included a new QTL and more accurate location of two previously identified QTLs. A microarray experiment using normal and crumbly fruit at three different developmental stages identified several genes that were differentially expressed between the crumbly and non-crumbly phenotypes within the three QTL. Analysis of gene function highlighted the importance of processes that compromise ovule fertilization as triggers of crumbly fruit. These candidate genes provided insights regarding the molecular mechanisms involved in the genetic control of crumbly fruit in red raspberry. This study will contribute to new breeding strategies and diagnostics through the selection of molecular markers associated with the crumbly trait.


Cell Reports ◽  
2021 ◽  
Vol 34 (12) ◽  
pp. 108883
Author(s):  
Jasmin I. Maier ◽  
Manuel Rogg ◽  
Martin Helmstädter ◽  
Alena Sammarco ◽  
Oliver Schilling ◽  
...  

2021 ◽  
Vol 22 (3) ◽  
pp. 1163
Author(s):  
Gaia Palmini ◽  
Cecilia Romagnoli ◽  
Simone Donati ◽  
Roberto Zonefrati ◽  
Gianna Galli ◽  
...  

Telangiectatic osteosarcoma (TOS) is an aggressive variant of osteosarcoma (OS) with distinctive radiographic, gross, microscopic features, and prognostic implications. Despite several studies on OS, we are still far from understanding the molecular mechanisms of TOS. In recent years, many studies have demonstrated not only that microRNAs (miRNAs) are involved in OS tumorigenesis, development, and metastasis, but also that the presence in high-grade types of OS of cancer stem cells (CSCs) plays an important role in tumor progression. Despite these findings, nothing has been described previously about the expression of miRNAs and the presence of CSCs in human TOS. Therefore, we have isolated/characterized a putative CSC cell line from human TOS (TOS-CSCs) and evaluated the expression levels of several miRNAs in TOS-CSCs using real-time quantitative assays. We show, for the first time, the existence of CSCs in human TOS, highlighting the in vitro establishment of this unique stabilized cell line and an identification of a preliminary expression of the miRNA profile, characteristic of TOS-CSCs. These findings represent an important step in the study of the biology of one of the most aggressive variants of OS and the role of miRNAs in TOS-CSC behavior.


2016 ◽  
Vol 4 (1) ◽  
pp. 9-26 ◽  
Author(s):  
Fengxuan Han ◽  
Caihong Zhu ◽  
Qianping Guo ◽  
Huilin Yang ◽  
Bin Li

The elasticity of the extracellular matrix has been increasingly recognized as a dominating factor of cell fate and activities. This review provides an overview of the general principles and recent advances in the field of matrix elasticity-dependent regulation of a variety of cellular activities and functions, the underlying biomechanical and molecular mechanisms, as well as the pathophysiological implications.


2016 ◽  
Vol 12 (10) ◽  
pp. 1916-1928 ◽  
Author(s):  
Yu Bin Lee ◽  
Joong-Yup Lee ◽  
Taufiq Ahmad ◽  
Seongwoo Bak ◽  
Jinkyu Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document