scholarly journals Enhanced homology-directed human genome engineering by controlled timing of CRISPR/Cas9 delivery

eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Steven Lin ◽  
Brett T Staahl ◽  
Ravi K Alla ◽  
Jennifer A Doudna

The CRISPR/Cas9 system is a robust genome editing technology that works in human cells, animals and plants based on the RNA-programmed DNA cleaving activity of the Cas9 enzyme. Building on previous work (<xref ref-type="bibr" rid="bib13">Jinek et al., 2013</xref>), we show here that new genetic information can be introduced site-specifically and with high efficiency by homology-directed repair (HDR) of Cas9-induced site-specific double-strand DNA breaks using timed delivery of Cas9-guide RNA ribonucleoprotein (RNP) complexes. Cas9 RNP-mediated HDR in HEK293T, human primary neonatal fibroblast and human embryonic stem cells was increased dramatically relative to experiments in unsynchronized cells, with rates of HDR up to 38% observed in HEK293T cells. Sequencing of on- and potential off-target sites showed that editing occurred with high fidelity, while cell mortality was minimized. This approach provides a simple and highly effective strategy for enhancing site-specific genome engineering in both transformed and primary human cells.

2014 ◽  
Vol 26 (1) ◽  
pp. 74 ◽  
Author(s):  
Daniel F. Carlson ◽  
Wenfang Tan ◽  
Perry B. Hackett ◽  
Scott C. Fahrenkrug

Over the past 5 years there has been a major transformation in our ability to precisely manipulate the genomes of animals. Efficiencies of introducing precise genetic alterations in large animal genomes have improved 100 000-fold due to a succession of site-specific nucleases that introduce double-strand DNA breaks with a specificity of 10–9. Herein we describe our applications of site-specific nucleases, especially transcription activator-like effector nucleases, to engineer specific alterations in the genomes of pigs and cows. We can introduce variable changes mediated by non-homologous end joining of DNA breaks to inactive genes. Alternatively, using homology-directed repair, we have introduced specific changes that support either precise alterations in a gene’s encoded polypeptide, elimination of the gene or replacement by another unrelated DNA sequence. Depending on the gene and the mutation, we can achieve 10%–50% effective rates of precise mutations. Applications of the new precision genetics are extensive. Livestock now can be engineered with selected phenotypes that will augment their value and adaption to variable ecosystems. In addition, animals can be engineered to specifically mimic human diseases and disorders, which will accelerate the production of reliable drugs and devices. Moreover, animals can be engineered to become better providers of biomaterials used in the medical treatment of diseases and disorders.


2017 ◽  
Vol 114 (50) ◽  
pp. E10745-E10754 ◽  
Author(s):  
Alexandre Paix ◽  
Andrew Folkmann ◽  
Daniel H. Goldman ◽  
Heather Kulaga ◽  
Michael J. Grzelak ◽  
...  

The RNA-guided DNA endonuclease Cas9 has emerged as a powerful tool for genome engineering. Cas9 creates targeted double-stranded breaks (DSBs) in the genome. Knockin of specific mutations (precision genome editing) requires homology-directed repair (HDR) of the DSB by synthetic donor DNAs containing the desired edits, but HDR has been reported to be variably efficient. Here, we report that linear DNAs (single and double stranded) engage in a high-efficiency HDR mechanism that requires only ∼35 nucleotides of homology with the targeted locus to introduce edits ranging from 1 to 1,000 nucleotides. We demonstrate the utility of linear donors by introducing fluorescent protein tags in human cells and mouse embryos using PCR fragments. We find that repair is local, polarity sensitive, and prone to template switching, characteristics that are consistent with gene conversion by synthesis-dependent strand annealing. Our findings enable rational design of synthetic donor DNAs for efficient genome editing.


eLife ◽  
2013 ◽  
Vol 2 ◽  
Author(s):  
Martin Jinek ◽  
Alexandra East ◽  
Aaron Cheng ◽  
Steven Lin ◽  
Enbo Ma ◽  
...  

Type II CRISPR immune systems in bacteria use a dual RNA-guided DNA endonuclease, Cas9, to cleave foreign DNA at specific sites. We show here that Cas9 assembles with hybrid guide RNAs in human cells and can induce the formation of double-strand DNA breaks (DSBs) at a site complementary to the guide RNA sequence in genomic DNA. This cleavage activity requires both Cas9 and the complementary binding of the guide RNA. Experiments using extracts from transfected cells show that RNA expression and/or assembly into Cas9 is the limiting factor for Cas9-mediated DNA cleavage. In addition, we find that extension of the RNA sequence at the 3′ end enhances DNA targeting activity in vivo. These results show that RNA-programmed genome editing is a facile strategy for introducing site-specific genetic changes in human cells.


2019 ◽  
Author(s):  
Sandeep Chakraborty

‘Prime-editing’ proposes to replace traditional programmable nucleases (CRISPR-Cas9) using a catalytically impaired Cas9 (dCas9) connected to a engineered reverse transcriptase, and a guide RNA encoding both the target site and the desired change. With just a ‘nick’ on one strand, it is hypothe- sized, the negative, uncontrollable effects arising from double-strand DNA breaks (DSBs) - translocations, complex proteins, integrations and p53 activation - will be eliminated. However, sequencing data pro- vided (Accid:PRJNA565979) reveal plasmid integration, indicating that DSBs occur. Also, looking at only 16 off-targets is inadequate to assert that Prime-editing is more precise. Integration of plasmid occurs in all three versions (PE1/2/3). Interestingly, dCas9 which is known to be toxic in E. coli and yeast, is shown to have residual endonuclease activity. This also affects studies that use dCas9, like base- editors and de/methylations systems. Previous work using hRad51–Cas9 nickases also show significant integration in on-targets, as well as off-target integration [1]. Thus, we show that cellular response to nicking involves DSBs, and subsequent plasmid/Cas9 integration. This is an unacceptable outcome for any in vivo application in human therapy.


2021 ◽  
Author(s):  
Matthew G Durrant ◽  
Alison Fanton ◽  
Josh Tycko ◽  
Michaela Hinks ◽  
Sita Chandrasekaran ◽  
...  

Recent microbial genome sequencing efforts have revealed a vast reservoir of mobile genetic elements containing integrases that could be useful genome engineering tools. Large serine recombinases (LSRs), such as Bxb1 and PhiC31, are bacteriophage-encoded integrases that can facilitate the insertion of phage DNA into bacterial genomes. However, only a few LSRs have been previously characterized and they have limited efficiency in human cells. Here, we developed a systematic computational discovery workflow that searches across the bacterial tree of life to expand the diversity of known LSRs and their cognate DNA attachment sites by >100-fold. We validated this approach via experimental characterization of LSRs, leading to three classes of LSRs distinguished from one another by their efficiency and specificity. We identify landing pad LSRs that efficiently integrate into native attachment sites in a human cell context, human genome-targeting LSRs with computationally predictable pseudosites, and multi-targeting LSRs that can unidirectionally integrate cargos with similar efficiency and superior specificity to commonly used transposases. LSRs from each category were functionally characterized in human cells, overall achieving up to 7-fold higher plasmid recombination than Bxb1 and genome insertion efficiencies of 40-70% with cargo sizes over 7 kb. Overall, we establish a paradigm for the large-scale discovery of microbial recombinases directly from sequencing data and the reconstruction of their target sites. This strategy provided a rich resource of over 60 experimentally characterized LSRs that can function in human cells and thousands of additional candidates for large-payload genome editing without double-stranded DNA breaks.


2019 ◽  
Author(s):  
Yan-ru Cui ◽  
Shao-jie Wang ◽  
Jun Chen ◽  
Jie Li ◽  
Wenzhang Chen ◽  
...  

AbstractBackgroundCRISPR-Cas9 has been developed as a therapeutic agent for various infectious and genetic diseases. In many clinically relevant applications, constitutively active CRISPR-Cas9 is delivered into human cells without a temporal control system. Excessive and prolonged expression CRISPR-Cas9 can lead to elevated off-target cleavage. The need for modulating CRISPR-Cas9 activity over the dimensions of time and dose has created the demand of developing CRISPR-Cas off-switches. Protein and small molecule-based CRISPR-Cas inhibitors have been reported in previous studies.ResultsWe report the discovery of Cas9-inhibiting peptides from inoviridae bacteriophages. These peptides, derived from the periplasmic domain of phage major coat protein G8P (G8PPD), can inhibit the in vitro activity of Streptococcus pyogenes Cas9 (SpCas9) proteins in an allosteric manner. Importantly, the inhibitory activity of G8PPD on SpCas9 is dependent on the order of guide RNA addition. Ectopic expression of full-length G8P (G8PFL) or G8PPD in human cells can inactivate the genome-editing activity of SpCas9 with minimum alterations of the mutation patterns. Furthermore, unlike the anti-CRISPR protein AcrII4A that completely abolishes the cellular activity of CRISPR-Cas9, G8P co-transfection can reduce the off-target activity of co-transfected SpCas9 while retaining its on-target activity.ConclusionG8Ps discovered in the current study represent the first anti-CRISPR peptides that can allosterically inactivate CRISPR-Cas9. This finding may provide insights into developing next-generation CRISPR-Cas inhibitors for precision genome engineering.


2016 ◽  
Vol 44 (16) ◽  
pp. 7997-8010 ◽  
Author(s):  
Brian R. Shy ◽  
Matthew S. MacDougall ◽  
Ryan Clarke ◽  
Bradley J. Merrill

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Masayuki Nakamura ◽  
Yuta Okamura ◽  
Hisashi Iwai

AbstractThe CRISPR-Cas9 system has a potential for wide application in organisms that particularly present low homologous integration rates. In this study, we developed three different methods using this system to replace a gene through homology-directed repair in the plant pathogenic fungus Colletotrichum sansevieriae, which has a low recombination frequency. The gene encoding scytalone dehydratase was used as the target so that mutants can be readily distinguished owning to a lack of melanin biosynthesis. First, we performed a plasmid-based method using plasmids containing a Cas9 expression cassette and/or a single-guide RNA (sgRNA) under the control of the endogenous U6 snRNA promoter, and 67 out of 69 (97.1%) transformants exhibited a melanin-deficient phenotype with high efficiency. Second, we performed a transformation using a Cas9 protein/sgRNA complex and obtained 23 out of 28 (82.1%) transformants. Lastly, we developed a hybrid system combining a Cas9 protein and donor DNA-sgRNA expression plasmid, which yielded 75 out of 84 (89.2%) transformants. This system was also applicable to four other genes at different loci of the fungus. This is the first study to establish a CRISPR/Cas9 gene replacement system in Colletotrichum spp. and it presents a potential application for a broad range of use in other species of the genus.


1997 ◽  
Vol 17 (7) ◽  
pp. 3779-3785 ◽  
Author(s):  
G Henderson ◽  
J P Simons

In mammalian cells, the predominant pathway of chromosomal integration of exogenous DNA is random or illegitimate recombination; integration by homologous recombination is infrequent. Homologous recombination is initiated at double-strand DNA breaks which have been acted on by single-strand exonuclease. To further characterize the relationship between illegitimate and homologous recombination, we have investigated whether illegitimate recombination is also preceded by exonuclease digestion. Heteroduplex DNAs which included strand-specific restriction markers at each of four positions were generated. These DNAs were introduced into mouse embryonic stem cells, and stably transformed clones were isolated and analyzed to determine whether there was any strand bias in the retention of restriction markers with respect to their positions. Some of the mismatches appear to have been resolved by mismatch repair. Very significant strand bias was observed in the retention of restriction markers, and there was polarity of marker retention between adjacent positions. We conclude that DNA is frequently subjected to 5'-->3' exonuclease digestion prior to integration by illegitimate recombination and that the length of DNA removed by exonuclease digestion can be extensive. We also provide evidence which suggests that frequent but less extensive 3'-->5' exonuclease processing also occurs.


2016 ◽  
Author(s):  
Winston X. Yan ◽  
Reza Mirzazadeh ◽  
Silvano Garnerone ◽  
David Scott ◽  
Martin W. Schneider ◽  
...  

AbstractWe present a method for genome-wide DNA double-strand Breaks (DSBs) Labeling In Situ and Sequencing (BLISS) which, compared to existing methods, introduces several key features: 1) high efficiency and low input requirement by in situ DSB labeling in cells or tissue sections directly on a solid surface; 2) easy scalability by performing in situ reactions in multi-well plates; 3) high sensitivity by linearly amplifying tagged DSBs using in vitro transcription; and 4) accurate DSB quantification and control of PCR biases by using unique molecular identifiers. We demonstrate the ability to use BLISS to quantify natural and drug-induced DSBs in low-input samples of cancer cells, primary mouse embryonic stem cells, and mouse liver tissue sections. Finally, we applied BLISS to compare the specificity of CRISPR-associated RNA-guided endonucleases Cas9 and Cpf1, and found that Cpf1 has higher specificity than Cas9. These results establish BLISS as a versatile, sensitive, and efficient method for genome-wide DSB mapping in many applications.


Sign in / Sign up

Export Citation Format

Share Document