scholarly journals Non-canonical Wnt signalling modulates the endothelial shear stress flow sensor in vascular remodelling

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Claudio A Franco ◽  
Martin L Jones ◽  
Miguel O Bernabeu ◽  
Anne-Clemence Vion ◽  
Pedro Barbacena ◽  
...  

Endothelial cells respond to molecular and physical forces in development and vascular homeostasis. Deregulation of endothelial responses to flow-induced shear is believed to contribute to many aspects of cardiovascular diseases including atherosclerosis. However, how molecular signals and shear-mediated physical forces integrate to regulate vascular patterning is poorly understood. Here we show that endothelial non-canonical Wnt signalling regulates endothelial sensitivity to shear forces. Loss of Wnt5a/Wnt11 renders endothelial cells more sensitive to shear, resulting in axial polarization and migration against flow at lower shear levels. Integration of flow modelling and polarity analysis in entire vascular networks demonstrates that polarization against flow is achieved differentially in artery, vein, capillaries and the primitive sprouting front. Collectively our data suggest that non-canonical Wnt signalling stabilizes forming vascular networks by reducing endothelial shear sensitivity, thus keeping vessels open under low flow conditions that prevail in the primitive plexus.

2018 ◽  
Vol 217 (5) ◽  
pp. 1651-1665 ◽  
Author(s):  
Anne-Clémence Vion ◽  
Silvanus Alt ◽  
Alexandra Klaus-Bergmann ◽  
Anna Szymborska ◽  
Tuyu Zheng ◽  
...  

Blood flow shapes vascular networks by orchestrating endothelial cell behavior and function. How endothelial cells read and interpret flow-derived signals is poorly understood. Here, we show that endothelial cells in the developing mouse retina form and use luminal primary cilia to stabilize vessel connections selectively in parts of the remodeling vascular plexus experiencing low and intermediate shear stress. Inducible genetic deletion of the essential cilia component intraflagellar transport protein 88 (IFT88) in endothelial cells caused premature and random vessel regression without affecting proliferation, cell cycle progression, or apoptosis. IFT88 mutant cells lacking primary cilia displayed reduced polarization against blood flow, selectively at low and intermediate flow levels, and have a stronger migratory behavior. Molecularly, we identify that primary cilia endow endothelial cells with strongly enhanced sensitivity to bone morphogenic protein 9 (BMP9), selectively under low flow. We propose that BMP9 signaling cooperates with the primary cilia at low flow to keep immature vessels open before high shear stress–mediated remodeling.


2021 ◽  
Author(s):  
Tevin CY Chau ◽  
Sungmin Baek ◽  
Baptiste Coxam ◽  
Renae Skoczylas ◽  
Maria Rondon-Galeano ◽  
...  

Lymphatic vascular development is regulated by well-characterised signalling and transcriptional pathways. These pathways regulate lymphatic endothelial cell (LEC) migration, motility, polarity and and morphogenesis. Canonical and non-canonical WNT signalling pathways are known to control LEC polarity and development of lymphatic vessels and valves. PKD1, encoding Polycystin-1, is the most commonly mutated gene in polycystic kidney disease but has also been shown to be essential in lymphatic vascular morphogenesis. The mechanism by which Pkd1 acts during lymphangiogenesis remains unclear. Here we find that loss of non-canonical WNT signalling components Wnt5a and Ryk phenocopy lymphatic defects seen in Pkd1 knockout mice. To investigate genetic interaction, we generated Pkd1/Wnt5a double knockout mice. Loss of Wnt5a suppressed phenotypes seen in the lymphatic vasculature of Pkd1-/- mice and Pkd1 deletion suppressed phenotypes observed in Wnt5a-/- mice. Thus, we report mutually suppressive roles for Pkd1 and Wnt5a, with developing lymphatic networks restored to a more wild-type state in double mutant mice. This genetic interaction between Pkd1 and the non-canonical WNT signalling pathway ultimately controls LEC polarity and the morphogenesis of developing vessel networks. Our work suggests that Pkd1 acts at least in part by regulating non-canonical WNT signalling during the formation of lymphatic vascular networks.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Joana R Carvalho ◽  
Isabela C Fortunato ◽  
Catarina G Fonseca ◽  
Anna Pezzarossa ◽  
Pedro Barbacena ◽  
...  

Morphogenesis of hierarchical vascular networks depends on the integration of multiple biomechanical signals by endothelial cells, the cells lining the interior of blood vessels. Expansion of vascular networks arises through sprouting angiogenesis, a process involving extensive cell rearrangements and collective cell migration. Yet, the mechanisms controlling angiogenic collective behavior remain poorly understood. Here, we show this collective cell behavior is regulated by non-canonical Wnt signaling. We identify that Wnt5a specifically activates Cdc42 at cell junctions downstream of ROR2 to reinforce coupling between adherens junctions and the actin cytoskeleton. We show that Wnt5a signaling stabilizes vinculin binding to alpha-catenin, and abrogation of vinculin in vivo and in vitro leads to uncoordinated polarity and deficient sprouting angiogenesis in Mus musculus. Our findings highlight how non-canonical Wnt signaling coordinates collective cell behavior during vascular morphogenesis by fine-tuning junctional mechanocoupling between endothelial cells.


2020 ◽  
Vol 35 (9) ◽  
pp. 1991-2003
Author(s):  
Julia C Young ◽  
Genevieve Kerr ◽  
Diana Micati ◽  
John E Nielsen ◽  
Ewa Rajpert-De Meyts ◽  
...  

Abstract STUDY QUESTION Is WNT signalling functional in normal and/or neoplastic human male germ cells? SUMMARY ANSWER Regulated WNT signalling component synthesis in human testes indicates that WNT pathway function changes during normal spermatogenesis and is active in testicular germ cell tumours (TGCTs), and that WNT pathway blockade may restrict seminoma growth and migration. WHAT IS KNOWN ALREADY Regulated WNT signalling governs many developmental processes, including those affecting male fertility during early germ cell development at embryonic and adult (spermatogonial) ages in mice. In addition, although many cancers arise from WNT signalling alterations, the functional relevance and WNT pathway components in TGCT, including germ cell neoplasia in situ (GCNIS), are unknown. STUDY DESIGN, SIZE, DURATION The cellular distribution of transcripts and proteins in WNT signalling pathways was assessed in fixed human testis sections with normal spermatogenesis, GCNIS and seminoma (2–16 individuals per condition). Short-term (1–7 h) ligand activation and long-term (1–5 days) functional outcomes were examined using the well-characterised seminoma cell line, TCam-2. Pathway inhibition used siRNA or chemical exposures over 5 days to assess survival and migration. PARTICIPANTS/MATERIALS, SETTING, METHODS The cellular localisation of WNT signalling components was determined using in situ hybridisation and immunohistochemistry on Bouin’s- and formalin-fixed human testis sections with complete spermatogenesis or germ cell neoplasia, and was also assessed in TCam-2 cells. Pathway function tests included exposure of TCam-2 cells to ligands, small molecules and siRNAs. Outcomes were measured by monitoring beta-catenin (CTNNB1) intracellular localisation, cell counting and gap closure measurements. MAIN RESULTS AND THE ROLE OF CHANCE Detection of nuclear-localised beta-catenin (CTNNB1), and key WNT signalling components (including WNT3A, AXIN2, TCF7L1 and TCF7L2) indicate dynamic and cell-specific pathway activity in the adult human testis. Their presence in germ cell neoplasia and functional analyses in TCam-2 cells indicate roles for active canonical WNT signalling in TGCT relating to viability and migration. All data were analysed to determine statistical significance. LARGE SCALE DATA No large-scale datasets were generated in this study. LIMITATIONS, REASONS FOR CAUTION As TGCTs are rare and morphologically heterogeneous, functional studies in primary cancer cells were not performed. Functional analysis was performed with the only well-characterised, widely accepted seminoma-derived cell line. WIDER IMPLICATIONS OF THE FINDINGS This study demonstrated the potential sites and involvement of the WNT pathway in human spermatogenesis, revealing similarities with murine testis that suggest the potential for functional conservation during normal spermatogenesis. Evidence that inhibition of canonical WNT signalling leads to loss of viability and migratory activity in seminoma cells suggests that potential treatments using small molecule or siRNA inhibitors may be suitable for patients with metastatic TGCTs. STUDY FUNDING AND COMPETING INTEREST(S) This study was funded by National Health and Medical Research Council of Australia (Project ID 1011340 to K.L.L. and H.E.A., and Fellowship ID 1079646 to K.L.L.) and supported by the Victorian Government’s Operational Infrastructure Support Program. None of the authors have any competing interests.


2017 ◽  
Author(s):  
L H Brunt ◽  
K Begg ◽  
E Kague ◽  
S Cross ◽  
C L Hammond

AbstractJoint morphogenesis requires mechanical activity during development. Loss of mechanical strain causes abnormal joint development, which can impact long term joint health. While cell orientation and proliferation are known to shape the joint, dynamic imaging of developing joints in vivo have not been possible in other species. Using genetic labelling techniques in zebrafish we were able, for the first time, to dynamically track cell behaviours in intact moving joints. We identify that proliferation and migration, which contribute to joint morphogenesis, are mechanically controlled and are significantly reduced in immobilised larvae. By comparison to strain maps of the developing skeleton we identify canonical Wnt signalling as a candidate to transduce mechanical forces into joint cell behaviours. We show that in the jaw Wnt signalling is reduced specifically in regions of high strain in response to loss of muscle activity. By pharmacological manipulation of canonical Wnt signalling we demonstrate that Wnt acts downstream of mechanical activity and is required for joint patterning and chondrocyte maturation. Wntl6, independent of muscle activity, controls proliferation and migration, but plays no role in chondrocyte intercalation.


2019 ◽  
Author(s):  
Abdullah AA Alghamdi ◽  
Christopher J Benwell ◽  
Samuel J Atkinson ◽  
Jordi Lambert ◽  
Stephen D Robinson

AbstractAngiogenesis relies on the ability of endothelial cells (ECs) to migrate over the extracellular matrix via integrin receptors to respond to an angiogenic stimulus. Of the two neuropilin (NRP) orthologs to be identified, both have been reported to be expressed on normal blood and lymphatic ECs, and to play roles in the formation of blood and lymphatic vascular networks during angiogenesis. Whilst the role of NRP1 and its interactions with integrins during angiogenesis has been widely studied, the role of NRP2 in ECs is poorly understood. Here we demonstrate that NRP2 promotes Rac-1 mediated EC adhesion and migration over fibronectin (FN) matrices in a mechanistically distinct fashion to NRP1, showing no dependence on β3 integrin (ITGB3) expression, or VEGF stimulation. Furthermore, we highlight evidence of a regulatory crosstalk between NRP2 and α5 integrin (ITGA5) in ECs, with NRP2 depletion eliciting an upregulation of ITGA5 expression and disruptions in ITGA5 cellular organisation. Finally, we propose a mechanism whereby NRP2 promotes ITGA5 recycling in ECs; NRP2 depleted ECs were found to exhibit reduced levels of total ITGA5 subunit recycling compared to wild-type (WT) ECs. Our findings expose NRP2 as a novel angiogenic player by promoting ITGA5-mediated EC adhesion and migration on FN.


Sign in / Sign up

Export Citation Format

Share Document