scholarly journals Rapid learning in visual cortical networks

eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Ye Wang ◽  
Valentin Dragoi

Although changes in brain activity during learning have been extensively examined at the single neuron level, the coding strategies employed by cell populations remain mysterious. We examined cell populations in macaque area V4 during a rapid form of perceptual learning that emerges within tens of minutes. Multiple single units and LFP responses were recorded as monkeys improved their performance in an image discrimination task. We show that the increase in behavioral performance during learning is predicted by a tight coordination of spike timing with local population activity. More spike-LFP theta synchronization is correlated with higher learning performance, while high-frequency synchronization is unrelated with changes in performance, but these changes were absent once learning had stabilized and stimuli became familiar, or in the absence of learning. These findings reveal a novel mechanism of plasticity in visual cortex by which elevated low-frequency synchronization between individual neurons and local population activity accompanies the improvement in performance during learning.

eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Diego A Gutnisky ◽  
Charles Beaman ◽  
Sergio E Lew ◽  
Valentin Dragoi

Brain activity during wakefulness is characterized by rapid fluctuations in neuronal responses. Whether these fluctuations play any role in modulating the accuracy of behavioral responses is poorly understood. Here, we investigated whether and how trial changes in the population response impact sensory coding in monkey V1 and perceptual performance. Although the responses of individual neurons varied widely across trials, many cells tended to covary with the local population. When population activity was in a ‘low’ state, neurons had lower evoked responses and correlated variability, yet higher probability to predict perceptual accuracy. The impact of firing rate fluctuations on network and perceptual accuracy was strongest 200 ms before stimulus presentation, and it greatly diminished when the number of cells used to measure the state of the population was decreased. These findings indicate that enhanced perceptual discrimination occurs when population activity is in a ‘silent’ response mode in which neurons increase information extraction.


2015 ◽  
Author(s):  
Iris Grothe ◽  
David Rotermund ◽  
Simon D. Neitzel ◽  
Sunita Mandon ◽  
Udo A. Ernst ◽  
...  

Selective attention causes visual cortical neurons to act as if only one of multiple stimuli are within their receptive fields. This suggests that attention employs a, yet unknown, neuronal gating mechanism for transmitting only the information that is relevant for the current behavioral context. We introduce an experimental paradigm to causally investigate this putative gating and the mechanism underlying selective attention by determining the signal availability of two time-varying stimuli in local field potentials of V4 neurons. We find transmission of the low frequency (<20Hz) components only from the attended visual input signal and that the higher frequencies from both stimuli are attenuated. A minimal model implementing routing by synchrony replicates the attentional gating effect and explains the spectral transfer characteristics of the signals. It supports the proposal that selective gamma-band synchrony subserves signal routing in cortex and further substantiates our experimental finding that attention selectively gates signals already at the level of afferent synaptic input.


2009 ◽  
Vol 23 (4) ◽  
pp. 191-198 ◽  
Author(s):  
Suzannah K. Helps ◽  
Samantha J. Broyd ◽  
Christopher J. James ◽  
Anke Karl ◽  
Edmund J. S. Sonuga-Barke

Background: The default mode interference hypothesis ( Sonuga-Barke & Castellanos, 2007 ) predicts (1) the attenuation of very low frequency oscillations (VLFO; e.g., .05 Hz) in brain activity within the default mode network during the transition from rest to task, and (2) that failures to attenuate in this way will lead to an increased likelihood of periodic attention lapses that are synchronized to the VLFO pattern. Here, we tested these predictions using DC-EEG recordings within and outside of a previously identified network of electrode locations hypothesized to reflect DMN activity (i.e., S3 network; Helps et al., 2008 ). Method: 24 young adults (mean age 22.3 years; 8 male), sampled to include a wide range of ADHD symptoms, took part in a study of rest to task transitions. Two conditions were compared: 5 min of rest (eyes open) and a 10-min simple 2-choice RT task with a relatively high sampling rate (ISI 1 s). DC-EEG was recorded during both conditions, and the low-frequency spectrum was decomposed and measures of the power within specific bands extracted. Results: Shift from rest to task led to an attenuation of VLFO activity within the S3 network which was inversely associated with ADHD symptoms. RT during task also showed a VLFO signature. During task there was a small but significant degree of synchronization between EEG and RT in the VLFO band. Attenuators showed a lower degree of synchrony than nonattenuators. Discussion: The results provide some initial EEG-based support for the default mode interference hypothesis and suggest that failure to attenuate VLFO in the S3 network is associated with higher synchrony between low-frequency brain activity and RT fluctuations during a simple RT task. Although significant, the effects were small and future research should employ tasks with a higher sampling rate to increase the possibility of extracting robust and stable signals.


2018 ◽  
Vol 29 (5) ◽  
pp. 1984-1996 ◽  
Author(s):  
Dardo Tomasi ◽  
Nora D Volkow

Abstract The origin of the “resting-state” brain activity recorded with functional magnetic resonance imaging (fMRI) is still uncertain. Here we provide evidence for the neurovascular origins of the amplitude of the low-frequency fluctuations (ALFF) and the local functional connectivity density (lFCD) by comparing them with task-induced blood-oxygen level dependent (BOLD) responses, which are considered a proxy for neuronal activation. Using fMRI data for 2 different tasks (Relational and Social) collected by the Human Connectome Project in 426 healthy adults, we show that ALFF and lFCD have linear associations with the BOLD response. This association was significantly attenuated by a novel task signal regression (TSR) procedure, indicating that task performance enhances lFCD and ALFF in activated regions. We also show that lFCD predicts BOLD activation patterns, as was recently shown for other functional connectivity metrics, which corroborates that resting functional connectivity architecture impacts brain activation responses. Thus, our findings indicate a common source for BOLD responses, ALFF and lFCD, which is consistent with the neurovascular origin of local hemodynamic synchrony presumably reflecting coordinated fluctuations in neuronal activity. This study also supports the development of task-evoked functional connectivity density mapping.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Jizheng Zhao ◽  
Dardo Tomasi ◽  
Corinde E. Wiers ◽  
Ehsan Shokri-Kojori ◽  
Şükrü B. Demiral ◽  
...  

Negative urgency (NU) and positive urgency (PU) are implicated in several high-risk behaviors, such as eating disorders, substance use disorders, and nonsuicidal self-injury behavior. The current study aimed to explore the possible link between trait of urgency and brain activity at rest. We assessed the amplitude of low-frequency fluctuations (ALFF) of the resting-state functional magnetic resonance imaging (fMRI) signal in 85 healthy volunteers. Trait urgency measures were related to ALFF in the lateral orbitofrontal cortex, dorsolateral prefrontal cortex, ventral and dorsal medial frontal cortex, anterior cingulate, and posterior cingulate cortex/precuneus. In addition, trait urgency measures showed significant correlations with the functional connectivity of the posterior cingulate cortex/precuneus seed with the thalamus and midbrain region. These findings suggest an association between intrinsic brain activity and impulsive behaviors in healthy humans.


2005 ◽  
Vol 93 (1) ◽  
pp. 519-534 ◽  
Author(s):  
Masayuki Watanabe ◽  
Yasushi Kobayashi ◽  
Yuka Inoue ◽  
Tadashi Isa

To examine the role of competitive and cooperative neural interactions within the intermediate layer of superior colliculus (SC), we elevated the basal SC neuronal activity by locally injecting a cholinergic agonist nicotine and analyzed its effects on saccade performance. After microinjection, spontaneous saccades were directed toward the movement field of neurons at the injection site (affected area). For visually guided saccades, reaction times were decreased when targets were presented close to the affected area. However, when visual targets were presented remote from the affected area, reaction times were not increased regardless of the rostrocaudal level of the injection sites. The endpoints of visually guided saccades were biased toward the affected area when targets were presented close to the affected area. After this endpoint effect diminished, the trajectories of visually guided saccades remained modestly curved toward the affected area. Compared with the effects on endpoints, the effects on reaction times were more localized to the targets close to the affected area. These results are consistent with a model that saccades are triggered by the activities of neurons within a restricted region, and the endpoints and trajectories of the saccades are determined by the widespread population activity in the SC. However, because increased reaction times were not observed for saccades toward targets remote from the affected area, inhibitory interactions in the SC may not be strong enough to shape the spatial distribution of the low-frequency preparatory activities in the SC.


Sign in / Sign up

Export Citation Format

Share Document