scholarly journals A novel optical microscope for imaging large embryos and tissue volumes with sub-cellular resolution throughout

eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Gail McConnell ◽  
Johanna Trägårdh ◽  
Rumelo Amor ◽  
John Dempster ◽  
Es Reid ◽  
...  

Current optical microscope objectives of low magnification have low numerical aperture and therefore have too little depth resolution and discrimination to perform well in confocal and nonlinear microscopy. This is a serious limitation in important areas, including the phenotypic screening of human genes in transgenic mice by study of embryos undergoing advanced organogenesis. We have built an optical lens system for 3D imaging of objects up to 6 mm wide and 3 mm thick with depth resolution of only a few microns instead of the tens of microns currently attained, allowing sub-cellular detail to be resolved throughout the volume. We present this lens, called the Mesolens, with performance data and images from biological specimens including confocal images of whole fixed and intact fluorescently-stained 12.5-day old mouse embryos.

Author(s):  
W.S. Putnam ◽  
C. Viney

Many sheared liquid crystalline materials (fibers, films and moldings) exhibit a fine banded microstructure when observed in the polarized light microscope. In some cases, for example Kevlar® fiber, the periodicity is close to the resolution limit of even the highest numerical aperture objectives. The periodic microstructure reflects a non-uniform alignment of the constituent molecules, and consequently is an indication that the mechanical properties will be less than optimal. Thus it is necessary to obtain quality micrographs for characterization, which in turn requires that fine detail should contribute significantly to image formation.It is textbook knowledge that the resolution achievable with a given microscope objective (numerical aperture NA) and a given wavelength of light (λ) increases as the angle of incidence of light at the specimen surface is increased. Stated in terms of the Abbe resolution criterion, resolution improves from λ/NA to λ/2NA with increasing departure from normal incidence.


Author(s):  
Bertholdand Senftinger ◽  
Helmut Liebl

During the last few years the investigation of clean and adsorbate-covered solid surfaces as well as thin-film growth and molecular dynamics have given rise to a constant demand for high-resolution imaging microscopy with reflected and diffracted low energy electrons as well as photo-electrons. A recent successful implementation of a UHV low-energy electron microscope by Bauer and Telieps encouraged us to construct such a low energy electron microscope (LEEM) for high-resolution imaging incorporating several novel design features, which is described more detailed elsewhere.The constraint of high field strength at the surface required to keep the aberrations caused by the accelerating field small and high UV photon intensity to get an improved signal-to-noise ratio for photoemission led to the design of a tetrode emission lens system capable of also focusing the UV light at the surface through an integrated Schwarzschild-type objective. Fig. 1 shows an axial section of the emission lens in the LEEM with sample (28) and part of the sample holder (29). The integrated mirror objective (50a, 50b) is used for visual in situ microscopic observation of the sample as well as for UV illumination. The electron optical components and the sample with accelerating field followed by an einzel lens form a tetrode system. In order to keep the field strength high, the sample is separated from the first element of the einzel lens by only 1.6 mm. With a numerical aperture of 0.5 for the Schwarzschild objective the orifice in the first element of the einzel lens has to be about 3.0 mm in diameter. Considering the much smaller distance to the sample one can expect intense distortions of the accelerating field in front of the sample. Because the achievable lateral resolution depends mainly on the quality of the first imaging step, careful investigation of the aberrations caused by the emission lens system had to be done in order to avoid sacrificing high lateral resolution for larger numerical aperture.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
María del Pilar Madrigal ◽  
Sandra Jurado

AbstractOxytocin (OXT) and arginine vasopressin (AVP) support a broad range of behaviors and homeostatic functions including sex-specific and context-appropriate social behaviors. Although the alterations of these systems have been linked with social-related disorders such as autism spectrum disorder, their formation and developmental dynamics remain largely unknown. Using novel brain clearing techniques and 3D imaging, we have reconstructed the specification of oxytocinergic and vasopressinergic circuits in the developing mouse brain with unprecedented cellular resolution. A systematic quantification indicates that OXT and AVP neurons in the hypothalamus display distinctive developmental dynamics and high cellular plasticity from embryonic to early postnatal stages. Our findings reveal new insights into the specification and consolidation of neuropeptidergic systems in the developing CNS.


2014 ◽  
Vol 65 ◽  
pp. 54-60 ◽  
Author(s):  
Dalibor Petković ◽  
Shahaboddin Shamshirband ◽  
Nor Badrul Anuar ◽  
Mohd Hairul Nizam Md Nasir ◽  
Nenad T. Pavlović ◽  
...  

2006 ◽  
Vol 514-516 ◽  
pp. 1457-1461
Author(s):  
Kee Joe Lim ◽  
Oh Deok Kwon ◽  
Cheol Hyun Park ◽  
Jong Sub Lee ◽  
Seong Hwa Kang

In this paper, the design and characteristics of a novel ultrasonic motor which is applicable to optical zoom or auto focusing operation of lens system for mobile phone are investigated. Its design and simulation of performances are carried out by FEM (Finite Element Method) commercial software. The shape of the motor is like square without one side, which is able to insert optical lens. Two sheets of piezoelectric ceramic are fixed to both sides of the two legs of an elastic body, respectively. To drive the ultrasonic motor, the voltage is applied to the two sheets of piezoelectric ceramic bonded to one leg. The rotation direction can be easily changed by switching the applied voltage to the piezoelectric sheets bonded to the other legs. The proto type of motor is fabricated and its outer size is 10*10*2 mm3 including the camera lens of which the diameter is 7.5 mm. Its power consumption is about 0.3 W and the rotation speed is adjustable from 10 to 200 rpm according to the applied voltage.


1998 ◽  
Vol 5 (3) ◽  
pp. 1088-1089 ◽  
Author(s):  
Norio Watanabe ◽  
Sadao Aoki

The depth resolution of a soft X-ray hologram is much worse than its transverse resolution because a single soft X-ray hologram has a small numerical aperture. To obtain a three-dimensional image, in-line holograms of a specimen were recorded from various directions and reconstructed to obtain two-dimensional projection data. Then, a three-dimensional reconstruction was performed by back-projection of these reconstructed holograms. Three-dimensional images of a tungsten wire of diameter 10 µm and a fossil of a diatom were obtained.


2011 ◽  
Vol 383-390 ◽  
pp. 4889-4894
Author(s):  
Zhi Qin Huang ◽  
Pei Ying Quan ◽  
Jin Li Zhang

In the past half century, the camera industry has developed very rapidly, which drove the optical lens and optical zoom technology to make great progress. The zoom lens’ technology principle of current mainstream optical zoom lens system is achieved by adjusting the relative position of the lens, objects and the focus. This paper takes the double-liquid zoom lens based on electric wet effect as the basis , the new zoom optical system is designed to achieve motor control without mechanical movement, then the vision correction is designed by using liquid lens, such as the correction of myopia and hyperopia, which can automatically identify the eyes degrees of myopia and hyperopia, avoid frequent replacement lens steps when optometry is done for eyes.


2011 ◽  
Vol 19 (3) ◽  
pp. 163 ◽  
Author(s):  
Noel T Goldsmith

In light microscopy, the spatial transverse resolution is a function of the wavelength and numerical aperture. The depth resolution is another function of these parameters. The factors that enable the detection of fine detail, make the sharp focusing of more than a thin slice of the depth in an object impossible. When the examination of fracture surfaces is attempted using light reflection microscopy, the roughness will often restrict the in-focus parts of an image to a small portion of the field of view. Several authors have presented methods that enable a set of digitised images to be processed into a single composite image which contains the in-focus parts from each image. These methods are effective, unfortunately the noise present in each digital image is accumulated, resulting in increasingly noisy composite images as the number of images in a set is increased. During processing, a separate image depicting the heights in the surface, i.e. a contour map, may be produced. This image is the key that enables the production of an in focus composite image which does not accumulate noise. Image analysis under computer control will frequently require the use of automatic focusing. Several authors have published criteria which may be used to determine the state of focus of an image. Such criteria have a clear application to the above process. This paper presents an evaluation of some methods used for the processing of such images, and also some procedures used for the determination of sharpness of focus and demonstrates a sensitive method for the evaluation of such procedures. Finally, an implementation of a method which uses the one of the simplest focus criteria is presented, and a procedure for the production of deep focus images which are free from the accumulation of noise.


Sign in / Sign up

Export Citation Format

Share Document