scholarly journals KIF2A regulates the development of dentate granule cells and postnatal hippocampal wiring

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Noriko Homma ◽  
Ruyun Zhou ◽  
Muhammad Imran Naseer ◽  
Adeel G Chaudhary ◽  
Mohammed H Al-Qahtani ◽  
...  

Kinesin super family protein 2A (KIF2A), an ATP-dependent microtubule (MT) destabilizer, regulates cell migration, axon elongation, and pruning in the developing nervous system. KIF2A mutations have recently been identified in patients with malformed cortical development. However, postnatal KIF2A is continuously expressed in the hippocampus, in which new neurons are generated throughout an individual's life in established neuronal circuits. In this study, we investigated KIF2A function in the postnatal hippocampus by using tamoxifen-inducible Kif2a conditional knockout (Kif2a-cKO) mice. Despite exhibiting no significant defects in neuronal proliferation or migration, Kif2a-cKO mice showed signs of an epileptic hippocampus. In addition to mossy fiber sprouting, the Kif2a-cKO dentate granule cells (DGCs) showed dendro-axonal conversion, leading to the growth of many aberrant overextended dendrites that eventually developed axonal properties. These results suggested that postnatal KIF2A is a key length regulator of DGC developing neurites and is involved in the establishment of precise postnatal hippocampal wiring.

2010 ◽  
Vol 103 (3) ◽  
pp. 1490-1500 ◽  
Author(s):  
Robert F. Hunt ◽  
Stephen W. Scheff ◽  
Bret N. Smith

Posttraumatic epilepsy is a frequent consequence of brain trauma, but relatively little is known about how neuronal circuits are chronically altered after closed head injury. We examined whether local recurrent excitatory synaptic connections form between dentate granule cells in mice 8–12 wk after cortical contusion injury. Mice were monitored for behavioral seizures shortly after brain injury and ≤10 wk postinjury. Injury-induced seizures were observed in 15% of mice, and spontaneous seizures were observed weeks later in 40% of mice. Timm's staining revealed mossy fiber sprouting into the inner molecular layer of the dorsal dentate gyrus ipsilateral to the injury in 95% of mice but not contralateral to the injury or in uninjured controls. Whole cell patch-clamp recordings were made from granule cells in isolated hippocampal brain slices. Cells in slices with posttraumatic mossy fiber sprouting had an increased excitatory postsynaptic current (EPSC) frequency compared with cells in slices without sprouting from injured and control animals ( P < 0.001). When perfused with Mg2+-free artificial cerebrospinal fluid containing 100 μM picrotoxin, these cells had spontaneous bursts of EPSCs and action potentials. Focal glutamate photostimulation of the granule cell layer evoked a burst of EPSCs and action potentials indicative of recurrent excitatory connections in granule cells of slices with mossy fiber sprouting. In granule cells of slices without sprouting from injured animals and controls, spontaneous or photostimulation-evoked epileptiform activity was never observed. These results suggest that a new regionally localized excitatory network forms between dentate granule cells near the injury site within weeks after cortical contusion head injury.


2006 ◽  
Vol 17 (7) ◽  
pp. 3187-3196 ◽  
Author(s):  
Jinhong Huang ◽  
Ryuichi Sakai ◽  
Teiichi Furuichi

Crk-associated substrate (Cas) is a tyrosine-phosphorylated docking protein that is indispensable for the regulation of the actin cytoskeletal organization and cell migration in fibroblasts. The function of Cas in neurons, however, is poorly understood. Here we report that Cas is dominantly enriched in the brain, especially the cerebellum, of postnatal mice. During cerebellar development, Cas is highly tyrosine phosphorylated and is concentrated in the neurites and growth cones of granule cells. Cas coimmunoprecipitates with Src family protein tyrosine kinases, Crk, and cell adhesion molecules and colocalizes with these proteins in granule cells. The axon extension of granule cells is inhibited by either RNA interference knockdown of Cas or overexpression of the Cas mutant lacking the YDxP motifs, which are tyrosine phosphorylated and thereby interact with Crk. These findings demonstrate that Cas acts as a key scaffold that links the proteins associated with tyrosine phosphorylation signaling pathways to the granule cell axon elongation.


2018 ◽  
Author(s):  
William D. Hendricks ◽  
Gary L. Westbrook ◽  
Eric Schnell

AbstractIn temporal lobe epilepsy, sprouting of hippocampal mossy fiber axons onto dentate granule cell dendrites creates a recurrent excitatory network. However, unlike mossy fibers projecting to CA3, sprouted mossy fiber synapses depress upon repetitive activation. Thus, despite their proximal location, large presynaptic terminals, and ability to excite target neurons, the impact of sprouted mossy fiber synapses on hippocampal hyperexcitability is unclear. We find that despite their short-term depression, single episodes of sprouted mossy fiber activation in hippocampal slices initiated bursts of recurrent polysynaptic excitation. Consistent with a contribution to network hyperexcitability, optogenetic activation of sprouted mossy fibers reliably triggered action potential firing in postsynaptic dentate granule cells after single light pulses. This pattern resulted in a shift in network recruitment dynamics to an “early detonation” mode and an increased probability of release compared to mossy fiber synapses in CA3. A lack of tonic adenosine-mediated inhibition contributed to the higher probability of glutamate release thus facilitating reverberant circuit activity.Significance StatementSprouted mossy fibers are one of the hallmark histopathological findings in temporal lobe epilepsy. These fibers form recurrent excitatory synapses onto other dentate granule cells that display profound short-term depression. Here, however, we show that although these sprouted mossy fibers weaken substantially during repetitive activation, their initial high probability of glutamate release can activate reverberant network activity. Furthermore, we find that a lack of tonic adenosine inhibition enables this high probability of release and, consequently, recurrent network activity.


2020 ◽  
Author(s):  
Sachin Makani ◽  
Stefano Lutzu ◽  
Pablo J. Lituma ◽  
David L. Hunt ◽  
Pablo E. Castillo

ABSTRACTIn the hippocampus, the excitatory synapse between dentate granule cell axons – or mossy fibers (MF) – and CA3 pyramidal cells (MF-CA3) expresses robust forms of short-term plasticity, such as frequency facilitation and post-tetanic potentiation (PTP). These forms of plasticity are due to increases in neurotransmitter release, and can be engaged when dentate granule cells fire in bursts (e.g. during exploratory behaviors) and bring CA3 pyramidal neurons above threshold. While frequency facilitation at this synapse is limited by endogenous activation of presynaptic metabotropic glutamate receptors, whether MF-PTP can be regulated in an activity-dependent manner is unknown. Here, using physiologically relevant patterns of mossy fiber stimulation in acute mouse hippocampal slices, we found that disrupting postsynaptic Ca2+ dynamics increases MF-PTP, strongly suggesting a form of Ca2+-dependent retrograde suppression of this form of plasticity. PTP suppression requires a few seconds of MF bursting activity and Ca2+ release from internal stores. Our findings raise the possibility that the powerful MF-CA3 synapse can negatively regulate its own strength not only during PTP-inducing activity typical of normal exploratory behaviors, but also during epileptic activity.SIGNIFICANCE STATEMENTThe powerful mossy fiber-CA3 synapse exhibits strong forms of plasticity that are engaged during location-specific exploration, when dentate granule cells fire in bursts. While this synapse is well-known for its presynaptically-expressed LTP and LTD, much less is known about the robust changes that occur on a shorter time scale. How such short-term plasticity is regulated, in particular, remains poorly understood. Unexpectedly, an in vivo-like pattern of presynaptic activity induced robust post-tetanic potentiation (PTP) only when the postsynaptic cell was loaded with a high concentration of Ca2+ buffer, indicating a form of Ca2+–dependent retrograde suppression of PTP. Such suppression may have profound implications for how environmental cues are encoded into neural assemblies, and for limiting network hyperexcitability during seizures.


2005 ◽  
Vol 79 (18) ◽  
pp. 11716-11723 ◽  
Author(s):  
Daniel Mayer ◽  
Heike Fischer ◽  
Urs Schneider ◽  
Bernd Heimrich ◽  
Martin Schwemmle

ABSTRACT In the hippocampus of Borna disease virus (BDV)-infected newborn rats, dentate granule cells undergo progressive cell death. BDV is noncytolytic, and the pathogenesis of this neurodevelopmental damage in the absence of immunopathology remains unclear. A suitable model system to study early events of the pathology is lacking. We show here that organotypic hippocampal slice cultures from newborn rat pups are a suitable ex vivo model to examine BDV neuropathogenesis. After challenging hippocampal slice cultures with BDV, we observed a progressive loss of calbindin-positive granule cells 21 to 28 days postinfection. This loss was accompanied by reduced numbers of mossy fiber boutons when compared to mock-infected cultures. Similarly, the density of dentate granule cell axons, the mossy fiber axons, appeared to be substantially reduced. In contrast, hilar mossy cells and pyramidal neurons survived, although BDV was detectable in these cells. Despite infection of dentate granule cells 2 weeks postinfection, the axonal projections of these cells and the synaptic connectivity patterns were comparable to those in mock-infected cultures, suggesting that BDV-induced damage of granule cells is a postmaturation event that starts after mossy fiber synapses are formed. In summary, we find that BDV infection of rat organotypic hippocampal slice cultures results in selective neuronal damage similar to that observed with infected newborn rats and is therefore a suitable model to study BDV-induced pathology in the hippocampus.


Sign in / Sign up

Export Citation Format

Share Document