scholarly journals Connectomics of the zebrafish's lateral-line neuromast reveals wiring and miswiring in a simple microcircuit

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Eliot Dow ◽  
Adrian Jacobo ◽  
Sajjad Hossain ◽  
Kimberly Siletti ◽  
A J Hudspeth

The lateral-line neuromast of the zebrafish displays a restricted, consistent pattern of innervation that facilitates the comparison of microcircuits across individuals, developmental stages, and genotypes. We used serial blockface scanning electron microscopy to determine from multiple specimens the neuromast connectome, a comprehensive set of connections between hair cells and afferent and efferent nerve fibers. This analysis delineated a complex but consistent wiring pattern with three striking characteristics: each nerve terminal is highly specific in receiving innervation from hair cells of a single directional sensitivity; the innervation is redundant; and the terminals manifest a hierarchy of dominance. Mutation of the canonical planar-cell-polarity gene vangl2, which decouples the asymmetric phenotypes of sibling hair-cell pairs, results in randomly positioned, randomly oriented sibling cells that nonetheless retain specific wiring. Because larvae that overexpress Notch exhibit uniformly oriented, uniformly innervating hair-cell siblings, wiring specificity is mediated by the Notch signaling pathway.

2018 ◽  
Author(s):  
Eliot Dow ◽  
Adrian Jacobo ◽  
Sajjad Hossain ◽  
Kimberly Siletti ◽  
A. J. Hudspeth

AbstractThe lateral-line neuromast of the zebrafish displays a restricted, consistent pattern of innervation that facilitates the comparison of microcircuits across individuals, developmental stages, and genotypes. We used serial blockface scanning electron microscopy to determine from multiple specimens the neuromast connectome, or comprehensive set of connections between hair cells and afferent and efferent nerve fibers. This analysis delineated a complex but consistent wiring pattern with three striking characteristics: each nerve terminal is highly specific in receiving innervation from hair cells of a single directional sensitivity; the innervation is redundant; and the terminals manifest a hierarchy of dominance. Mutation of the canonical planar-cell-polarity gene vangl2, which decouples the asymmetric phenotypes of sibling hair-cell pairs, results in randomly positioned, randomly oriented sibling cells that nonetheless retain specific wiring. Because larvae that overexpress Notch exhibit uniformly oriented, uniformly innervating hair-cell siblings, wiring specificity is mediated by the Notch signaling pathway.


1994 ◽  
Vol 187 (1) ◽  
pp. 245-259 ◽  
Author(s):  
B U Budelmann ◽  
R Williamson

Changes in threshold sensitivity of hair cell afferents of the macula and crista of the Octopus statocyst were analyzed when the hair cells were stimulated with sinusoidal water movements from different directions. The experiments indicate that cephalopod statocyst hair cells are directionally sensitive in a way that is similar to the responses of the hair cells of the vertebrate vestibular and lateral line systems, with the amplitude of the response changing according to the cosine of the angle by which the direction of the stimulus (the deflection of the ciliary bundle) deviates from the direction of the hair cell's morphological polarization.


1971 ◽  
Vol 179 (1055) ◽  
pp. 157-169 ◽  

The sense organs of the body lateral-line canals of Scyliorhinus were examined with the electron microscope and shown to consist of supporting cells and two kinds of sensory cell. One type of sensory cell has the well-known structure of hair cells, bearing on its apical surface a group of stereocilia (6 to 25) associated with a single kinocilium. Each hair cell is innervated by a sensory nerve fibre and some also receive an efferent nerve supply. The second kind of sensory cell is similar in appearance, but differs at the apex in containing many vacuoles and in lacking stereocilia. There are many long microvilli and a single cilium which arises from a shallow pit. The internal structure of this cilium is variable, with the number of tubules in the outer ring ranging between 7 and 9 and with the inner pair consisting of double elements. This type of sensory cell is innervated by sensory nerve fibres and possibly by efferent fibres. The situation of the kinocilium of a hair cell in relation to the stereocilia is more variable than has been described in other hair cells while the cilium of the second sensory cell appears to bear no special relation to the microvilli. The accessory cells of the neuromast include basal and peripheral supporting cells, many of which produce a secretion, and a large secretory cell which is found at intervals at the edge of the organ. This cell has a convoluted surface and is full of vesicles.


Author(s):  
Melanie Holmgren ◽  
Lavinia Sheets

Hair cells are the mechanosensory receptors of the inner ear and can be damaged by noise, aging, and ototoxic drugs. This damage often results in permanent sensorineural hearing loss. Hair cells have high energy demands and rely on mitochondria to produce ATP as well as contribute to intracellular calcium homeostasis. In addition to generating ATP, mitochondria produce reactive oxygen species, which can lead to oxidative stress, and regulate cell death pathways. Zebrafish lateral-line hair cells are structurally and functionally analogous to cochlear hair cells but are optically and pharmacologically accessible within an intact specimen, making the zebrafish a good model in which to study hair-cell mitochondrial activity. Moreover, the ease of genetic manipulation of zebrafish embryos allows for the study of mutations implicated in human deafness, as well as the generation of transgenic models to visualize mitochondrial calcium transients and mitochondrial activity in live organisms. Studies of the zebrafish lateral line have shown that variations in mitochondrial activity can predict hair-cell susceptibility to damage by aminoglycosides or noise exposure. In addition, antioxidants have been shown to protect against noise trauma and ototoxic drug–induced hair-cell death. In this review, we discuss the tools and findings of recent investigations into zebrafish hair-cell mitochondria and their involvement in cellular processes, both under homeostatic conditions and in response to noise or ototoxic drugs. The zebrafish lateral line is a valuable model in which to study the roles of mitochondria in hair-cell pathologies and to develop therapeutic strategies to prevent sensorineural hearing loss in humans.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Tyler T. Hickman ◽  
Ken Hashimoto ◽  
Leslie D. Liberman ◽  
M. Charles Liberman

AbstractOverexposure to intense noise can destroy the synapses between auditory nerve fibers and their hair cell targets without destroying the hair cells themselves. In adult mice, this synaptopathy is immediate and largely irreversible, whereas, in guinea pigs, counts of immunostained synaptic puncta can recover with increasing post-exposure survival. Here, we asked whether this recovery simply reflects changes in synaptic immunostaining, or whether there is actual retraction and extension of neurites and/or synaptogenesis. Analysis of the numbers, sizes and spatial distribution of pre- and post-synaptic markers on cochlear inner hair cells, in guinea pigs surviving from 1 day to 6 months after a synaptopathic exposure, shows dramatic synaptic re-organization during the recovery period in which synapse counts recover from 16 to 91% of normal in the most affected regions. Synaptic puncta move all over the hair cell membrane during recovery, translocating far from their normal positions at the basolateral pole, and auditory-nerve terminals extend towards the hair cell’s apical end to re-establish contact with them. These observations provide stronger evidence for spontaneous neural regeneration in a mature mammalian cochlea than can be inferred from synaptic counts alone.


2014 ◽  
Vol 111 (3) ◽  
pp. 580-593 ◽  
Author(s):  
Mathieu Forgues ◽  
Heather A. Koehn ◽  
Askia K. Dunnon ◽  
Stephen H. Pulver ◽  
Craig A. Buchman ◽  
...  

Almost all patients who receive cochlear implants have some acoustic hearing prior to surgery. Electrocochleography (ECoG), or electrophysiological measures of cochlear response to sound, can identify remaining auditory nerve activity that is the basis for this residual hearing and can record potentials from hair cells that are no longer functionally connected to nerve fibers. The ECoG signal is therefore complex, being composed of both hair cell and neural signals. To identify signatures of different sources in the recorded potentials, we collected ECoG data across frequency and intensity from the round window of gerbils before and after treatment with kainic acid, a neurotoxin. Distortions in the recorded waveforms were produced by different sources over different ranges of frequency and intensity. In response to tones at low frequencies and low-to-moderate intensities, the major source of distortion was from neural phase-locking that was sensitive to kainic acid. At high intensities at all frequencies, the distortion was not sensitive to kainic acid and was consistent with asymmetric saturation of the hair cell transducer current. In addition to loss of phase-locking, changes in the envelope after kainic acid treatment indicate that sustained neural firing combines with receptor potentials from hair cells to produce the envelope of the response to tones. These results provide baseline data to interpret comparable recordings from human cochlear implant recipients.


2021 ◽  
Vol 14 ◽  
Author(s):  
Mark E. Warchol ◽  
Angela Schrader ◽  
Lavinia Sheets

The sensory organs of the inner ear contain resident populations of macrophages, which are recruited to sites of cellular injury. Such macrophages are known to phagocytose the debris of dying cells but the full role of macrophages in otic pathology is not understood. Lateral line neuromasts of zebrafish contain hair cells that are nearly identical to those in the inner ear, and the optical clarity of larval zebrafish permits direct imaging of cellular interactions. In this study, we used larval zebrafish to characterize the response of macrophages to ototoxic injury of lateral line hair cells. Macrophages migrated into neuromasts within 20 min of exposure to the ototoxic antibiotic neomycin. The number of macrophages in the near vicinity of injured neuromasts was similar to that observed near uninjured neuromasts, suggesting that this early inflammatory response was mediated by “local” macrophages. Upon entering injured neuromasts, macrophages actively phagocytosed hair cell debris. The injury-evoked migration of macrophages was significantly reduced by inhibition of Src-family kinases. Using chemical-genetic ablation of macrophages before the ototoxic injury, we also examined whether macrophages were essential for the initiation of hair cell regeneration. Results revealed only minor differences in hair cell recovery in macrophage-depleted vs. control fish, suggesting that macrophages are not essential for the regeneration of lateral line hair cells.


Life ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1180
Author(s):  
Alexandra Venuto ◽  
Timothy Erickson

Acute chemical ablation of lateral line hair cells is an important tool to understand lateral line-mediated behaviors in free-swimming fish larvae and adults. However, lateral line-mediated behaviors have not been described in fish larvae prior to swim bladder inflation, possibly because single doses of ototoxin do not effectively silence lateral line function at early developmental stages. To determine whether ototoxins can disrupt lateral line hair cells during early development, we repeatedly exposed zebrafish larvae to the ototoxin neomycin during a 36 h period from 3 to 4 days post-fertilization (dpf). We use simultaneous transgenic and vital dye labeling of hair cells to compare 6-h and 12-h repeated treatment timelines and neomycin concentrations between 0 and 400 µM in terms of larval survival, hair cell death, regeneration, and functional recovery. Following exposure to neomycin, we find that the emergence of newly functional hair cells outpaces cellular regeneration, likely due to the maturation of ototoxin-resistant hair cells that survive treatment. Furthermore, hair cells of 4 dpf larvae exhibit faster recovery compared to 3 dpf larvae. Our data suggest that the rapid functional maturation of ototoxin-resistant hair cells limits the effectiveness of chemical-based methods to disrupt lateral line function. Furthermore, we show that repeated neomycin treatments can continually ablate functional lateral line hair cells between 3 and 4 dpf in larval zebrafish.


2021 ◽  
Vol 15 ◽  
Author(s):  
Erin Jimenez ◽  
Claire C. Slevin ◽  
Luis Colón-Cruz ◽  
Shawn M. Burgess

Millions of Americans experience hearing or balance disorders due to loss of hair cells in the inner ear. The hair cells are mechanosensory receptors used in the auditory and vestibular organs of all vertebrates as well as the lateral line systems of aquatic vertebrates. In zebrafish and other non-mammalian vertebrates, hair cells turnover during homeostasis and regenerate completely after being destroyed or damaged by acoustic or chemical exposure. However, in mammals, destroying or damaging hair cells results in permanent impairments to hearing or balance. We sought an improved method for studying hair cell damage and regeneration in adult aquatic vertebrates by generating a transgenic zebrafish with the capacity for targeted and inducible hair cell ablation in vivo. This model expresses the human diphtheria toxin receptor (hDTR) gene under the control of the myo6b promoter, resulting in hDTR expressed only in hair cells. Cell ablation is achieved by an intraperitoneal injection of diphtheria toxin (DT) in adult zebrafish or DT dissolved in the water for larvae. In the lateral line of 5 days post fertilization (dpf) zebrafish, ablation of hair cells by DT treatment occurred within 2 days in a dose-dependent manner. Similarly, in adult utricles and saccules, a single intraperitoneal injection of 0.05 ng DT caused complete loss of hair cells in the utricle and saccule by 5 days post-injection. Full hair cell regeneration was observed for the lateral line and the inner ear tissues. This study introduces a new method for efficient conditional hair cell ablation in adult zebrafish inner ear sensory epithelia (utricles and saccules) and demonstrates that zebrafish hair cells will regenerate in vivo after this treatment.


Sign in / Sign up

Export Citation Format

Share Document